MULTIPLE-CHOICE QUESTION BOOKLET MATHEMATICAL METHODS PART 1

Specific Instructions for Section A

This part consists of 33 questions.

Answer all questions in this section on the answer sheet provided for multiple-choice questions.

A correct answer scores 1, an incorrect answer scores 0.

Marks will not be deducted for incorrect answers. You should attempt every question.

No credit will be given if two or more letters are marked for that question.

Question 1

Which one of the following graphs shows the graph with equation $y = x^2(2-x)(1+x)$.

Ħ

Question 2

For the function $f: (-3,2] \rightarrow R$, $f(x) = (x+1)^2 - 4$ the range is

- (-3, 5]
- [-4, 5]
- (-4.5]
- (0, 5]
- [-1, 2]

1995 MATHEMATICAL METHODS TRIAL CAT 2 PART I

Question 3

From the following graphs select the graphs which represent a function and which also have an inverse function.

- (i) only
- (ii) only
- (i) and (iii) only
- (ii) and (iii) only
- all of (i), (ii) and (iii)

Question 4
A possible equation for the graph shown is

A.
$$f(x) = \frac{2x-1}{x-1}$$

B.
$$f(x) = \frac{2x+3}{x+1}$$

$$C. \qquad f(x) = \frac{2x}{x-1}$$

D.
$$f(x) = \frac{2x+4}{x+1}$$

E.
$$f(x) = \frac{3-2x}{x-1}$$

1995 MATHEMATICAL METHODS TRIAL CAT 2 PART I

PAGE 3

Question 5

Which one of the following graphs represents the relation $y = 1 + 2e^{-x}$.

Question 6 A possible equation for the graph shown is

$$A. \qquad f(x) = \sin 2x$$

$$f(x) = \sin 2x$$
$$f(x) = \sin(3x + \pi)$$

$$f(x) = \cos(2x - \frac{\pi}{2})$$

D.

 $f(x) = \cos(3x + \frac{\pi}{2})$

C.

 $f(x) = \cos(3x - \frac{\pi}{2})$

₩.

$$E. f(x) = \cos(2x - \frac{\pi}{2})$$

Question 7

The solutions between 0 and π for which $\sqrt{2}\cos 3x = 1$ are

$$A \cdot \frac{5\pi}{12}, \frac{7\pi}{12}$$

B.
$$\frac{\pi}{4}, \frac{5\pi}{12}, \frac{11\pi}{12}$$

C.
$$\frac{\pi}{12}, \frac{5\pi}{12}, \frac{3\pi}{4}$$

$$D. \frac{\pi}{12}, \frac{7\pi}{12}, \frac{3\pi}{4}$$

E.
$$\frac{\pi}{12}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{11\pi}{12}$$

1995 MATHEMATICAL METHODS TRIAL CAT 2 PART I

PAGE 4

Question 8

The graph of the derived function f'(x) is shown.

Which of the following statements relating to the function, f(x), is false?

- f(x), is a polynomial of degree three.
- f(x) has exactly two stationary points.
- Ç f(x) is decreasing over the domain $(2, \infty)$.
- D. f(x) has a maximum turning point at x = 2.
- The gradient of f(x) is positive over the

domain (-∞,1).

Question 9

The derivative of $\frac{3x^2+2}{x^2}$ is equal to

Question 10

If $y = xe^{2x}$ then $\frac{dy}{dx}$ is

$$\mathbf{B} \cdot 2xe^{3x}$$

 $2xe^{4x}$

- $2xe^{2x}$
- $(2x+1)e^{2x}$
- $2xe^x + e^{2x}$

If $f(x) = \sqrt{x^2 - 4}$ then f'(x) is equal to

Question 11

A.
$$x\sqrt{x^2-4}$$

$$B. \qquad \frac{1}{2\sqrt{x^2-4}}$$

C.
$$\frac{x}{\sqrt{x^2-4}}$$

D.
$$\frac{x}{x-2}$$

$$\mathbf{E.} \qquad \frac{1}{2(x-2)}$$

Question 12

The derivative of $\frac{2t-1}{t+4}$ is equal to

$$A. \qquad \frac{9}{(t+4)^2}$$

$$\mathbf{B}. \qquad \frac{7}{(t+4)^2}$$

$$C. \qquad \frac{-9}{(t+4)^2}$$

D.
$$\frac{-7}{(2t-1)^2}$$

Question 13

The minimum value of $4x^2 - 2x + 3$ is

C.
$$3\frac{1}{2}$$

$$\mathbf{D}$$
. $2\frac{3}{4}$

Question 14

The gradient of the normal to the curve $f(x) = e^{-2x}$ at the point where $x = \frac{1}{2}$ is equal to

Ħ

After how many minutes is the volume increasing at the greatest rate? The volume of water in a container, V, after t minutes is given by $V(t) = \frac{2}{5}t^2(15 - \frac{1}{4}t)$, $0 \le t \le 60$. Question 15

20

Question 16 If x satisfies the equation $(e^x - 1)(e^{2x} - 4) = 0$ then x is equal to

0 or log, 16

Question 17 The coefficient of x^3 in the expansion of $(3-2x)^3$ is equal to

-360

Question 18

The function $f:[1,\infty)\to R$, $f(x)=(x-1)^2-4$ has an inverse function f^{-1} defined by

A.
$$f^{-1}:[1,\infty)\to R$$
, $f^{-1}(x)=1+\sqrt{x+4}$

B.
$$f^{-1}:[-1,\infty)\to R, f^{-1}(x)=4+\sqrt{x+1}$$

C.
$$f^{-1}:[-4,\infty) \to R$$
, $f^{-1}(x) = 1 + \sqrt{x+4}$

D.
$$f^{-1}:[1,\infty) \to R$$
, $f^{-1}(x) = 4 + \sqrt{x+1}$

E.
$$f^{-1}:[-5,\infty) \to R$$
, $f^{-1}(x) = \sqrt{x+5}$

Question 19

and x = 2 is approximated by dividing the interval into four sections equal in width and calculating the area of the lower rectangles. The area under the curve $y = 4x^3$ between x = 0

Using this technique, the approximate area is equal to

- > 25 square units
- Ξ. 24.75 square units
- C. 16 square units
- D. 12 square units
- 9 square units

Question 20

Given that $\int_0^3 f(x) dx = 4$ and g(x) = 2f(x) - 1 then $\int_3^0 g(x) dx$ is equal to

- CВ.
- Ď.
- (Χ. -11

Question 21

1995 MATHEMATICAL METHODS TRIAL CAT 2 PART I

Evaluate $\int_0^{\frac{\pi}{4}} 4\sin 2x \, dx$

₿.

- D.

Question 22

If c is an arbitrary constant and $f'(x) = \frac{6}{\sqrt{3x-1}}$ then f(x) is equal to

 $12\sqrt{3x-1}+c$

 $y = 4x^3$

- $4\sqrt{3x-1}+c$
- Ü $\sqrt{3x-1}+c$
- Ħ $\frac{1}{3\sqrt{3x-1}} + c$
- $\sqrt{3x-1}$ + c

Question 23

The area bounded by the curve $f(x) = \frac{3}{7-2x}$ and the x-axis from $x = \frac{1}{2}$ to x = 2 is equal to

- $\frac{3}{2}\log_e 2$
- $\frac{2}{3}\log_{e}0.5$
- $\frac{3}{2}\log_{e}0.5$
- $\frac{2}{3}\log_e 2$
- Ħ $\frac{3}{2}\log_e 3$

1	1995
	MATHEMATICAL
	L METHODS
	TRIAL
	CAT 2
	PART I

PAGE 9

Question 24 Calculate Pr(X > 2) where X has a probability distribution given by

Pr(X=x)	x
$3c^2$	1
$8c^2$	2
c ²	3
$4c^2$	4

Ď. 5 -1 C

20

Question 25
The random variable X represents the number of work place accidents in a factory per week.

The owner of this factory pays all employees a weekly bonus according to the following conditions: if no accidents occur a bonus of \$10 is paid if one accident occur a bonus of \$2 is paid if two or more accidents occur no bonus is paid. The employee can expect to receive a weekly bonus of

7 \$1.45

В. \$3.60

C \$4.00

Þ \$4.60

τ, \$4.90

Question 26

For a discrete random variable with mean 6.2 and variance 2.89, the interval in which 95% of the distribution would lie is

? 3 to 10

≂. 3 to 9

C. 2 to 10

₽. 0 to 11

(±) 0 to 12

1995 MATHEMATICAL METHODS TRIAL CAT 2 PART I The following information relates to questions 27 and 28

PAGE 10

A lampshade requires four light globes. The probability that each light globe will last more than one year is 0.6. The lampshade has four new globes inserted on Anzac Day.

closest to Question 27

The probability that no more than one of these globes will need to be replaced in the coming year is

? 0.026

₿. 0.130

Ċ 0.154

Ŭ. 0.179

Ŧ 0.475

Question 28
Over a ten year period, the number of globes the owner could expect to replace is

В.

C 5

D. 24

E 8

Question 29

X is a binomial random variable with p = 0.3. If $Pr(X \ge 1) = 0.7599$ the variance of X is equal to

1.47

В. 1.26

Ω 1.05

D 0.84

0.63

1995 MATHEMATICAL METHODS TRIAL CAT 2 PART I

PAGE 11

Question 30 Individual sweets are packaged in boxes with a recommended weight of 375 grams. The weight of these boxes of sweets is normally distributed with a mean of 375 g and variance of 4 g. Boxes which weigh less than 372 g are rejected prior to distribution. Calculate the probability, correct to 4 decimal places, that a randomly selected box of sweets will be rejected.

- 0.0668
- ₽. 0.2266
- c. 0.5000
- J 0.7734
- **T** 0.9932

respectively and standard deviations of σ_A and σ_B respectively. Which of the following is true? The diagram below shows two normal distributions, A and B, with means of μ_A and μ_B Question 31

- $\mu_A = \mu_B$ and $\sigma_A = \sigma_B$
- $\mu_A > \mu_B$ and $\sigma_A = \sigma_B$
- $\mu_A = \mu_B$ and $\sigma_A > \sigma_B$
- ₽. $\mu_A > \mu_B$ and $\sigma_A < \sigma_B$
- (X) $\mu_A = \mu_B$ and $\sigma_A < \sigma_B$

Question 32

closest to X is normally distributed with a mean of 20. Given that Pr(X > 24) = 0.4, the variance of X is

- 250
- 37.2 30.4
- 15.8
- F 6.1

Question 33

From a random sample of 25 primary school children, 10 are left-handed. An approximate 95% confidence interval for the proportion of primary school children who are left-handed is

- 0.106 0.694
- 0.204 0.596
- C 0.302 - 0.498

3 marks

₽.

0.371 - 0.429

Ŧ 0.381 - 0.419

1995 MATHEMATICAL METHODS TRIAL CAT 2 PART II

PAGE 1

MATHEMATICAL METHODS QUESTION AND ANSWER BOOKLET

	Question 2 Find the rule for the inverse function for $y = 4e^{x-1} + 2$	2 marks		Specific instructions to students Answer all questions in this section in the spaces provided. Question 1 Determine the largest possible domain for the function $f(x) = \sqrt{4x - x^2}$
--	--	---------	--	--

	3 marks
	Question 4 Find the area bounded by the x axis and the curve $f(x) = 3(1+x)(3-x)$ from $x = 1$ to $x = 4$.
	3 marks
	•
ı	
ı	
ı	
ı	
!	
ı	¥ .
5	
l	
ı	
1	
:	In the set of axes below skewn the graph with symmetric pls and stationary points.
₽ Q	Puestion 3 Note that the continuous properties of the continuous properties of the coordinates of the coor
15	995 MATHEMATICAL METHODS TRIAL CAT 2 PART II PAGE 2

a. Find the derivative of $4x^4 \log_e x$ b. Use your answer to part a to find $\int 4x \log_e x dx$. 3 marks	1995 MATHEMATICAL METHODS TRIAL CAT 2 PART II Question 5	PAGE 3
Use your answer to part a to find $\int 4x \log_e x dx$.	a. The new contract of the second	
Use your answer to part a to find $\int 4x \log_e x dx$.		
Use your answer to part a to find $\int 4x \log_e x dx$.		
3 marks		į
3 marks		
3 marks		
		3 marks

3 marks

END 1995 MATHEMATICAL METHODS TRIAL CAT 2. FACTS, SKILLS AND APPLICATIONS.