

CSE - MAY 2009

YEAR 12 CHEMISTRY

Written test 1

ANSWERS & SOLUTIONS BOOK

SECTION A - Multiple choice questions (20 marks)

1	Α	5	Α	9	В	13	D	17	С
2	D	6	D	10	A	14	D	18	D
3	С	7	Α	11	В	15	В	19	В
4	Δ	8	C	12	С	16	С	20	Α

2

SECTION B – Short answer questions (53 marks)

Question 1 (13 marks)

 $\textbf{a.} \quad \text{CO}_2(g) \ + \ \text{Ba}(\text{OH})_2(\text{aq}) \ \rightarrow \ \text{BaCO}_3(s) \ + \ \text{H}_2\text{O}(l) \\ \\ \text{1 mark}$

b. $Ba(OH)_2(aq) + 2HCl(aq) \rightarrow BaCl_2(aq) + 2H_2O(l)$ 1 mark

c. $n(Ba(OH)_2) = c \times V = 0.108 \times 0.100 = 0.0108 \text{ mol}$

d. $n(HCI) = c \times V = 0.0968 \times 0.02680 = 2.594 \times 10^{-3} \text{ mol}$

e. $n(Ba(OH)_2) = \frac{1}{2} n(HCI) = \frac{1}{2} \times 2.594 \times 10^{-3} = 1.297 \times 10^{-3} \text{ mol}$

f. $n(Ba(OH)_2)$ reacted = 0.0108 - 1.297 x 10⁻³ = 9.503 x 10⁻³ mol $n(CO_2) = n(Ba(OH)_2) = 9.503 \times 10^{-3}$ mol in 500 L of air 2 marks

g. $V(CO_2) = n(CO_2) \times 24.5 = 0.233 \text{ L at SLC}$

h. $v/v\% = 0.233/500 \times 100 = 0.0466\%$

i. $(BaCO_3) = 1.550 / 197.3 = 0.007856 \text{ mol} = n(CO_2)$ $(CO_2) = n(CO_2) \times 24.5 = 0.007856 \times 24.5 = 0.193 \text{ L}$ $v/v\% = 0.193 / 500 \times 100 = 0.0385\%$

3 marks

j. Incomplete precipitation, precipitate loss during washing, precipitate lost during filtration etc Allow consequential mark for paper and precipitate not dried to constant mass if i. > h.

1 mark

Question 2 (4 marks)

a. $2Li(s) + 2H_2O(l) \rightarrow 2LiOH(aq) + H_2(g)$ 1 mark

b. n(LiOH) = 2.50 / 6.9 = 0.362 mol $c = n/V = 0.362 / 0.100 = 3.62 \text{ mol L}^{-1}$

2 marks

c. $g/L = c \times Mr = 3.623 \times 23.9 = 86.6 \text{ g L}^{-1}$

,		
*		
i		

3

Question 3 (8 marks)

a. Paper is made of cellulose which is a polymer of glucose. A polar organic molecule with dipole-dipole (and possibly H-bonding) attractions will adsorb to a greater extent to the paper.

1 mark

c. Methanol will be detected first followed by ethanol and then ethane-1,2-diol. Separation reflects differences in relative molecular mass.

2 marks

d. Glucose is thermally unstable and will decompose.

1 mark

e. Operating conditions such as eluent pressure and operating temperature can vary and this will change retention times.

1 mark

Question 4 (7marks)

a. Peaks due to isotopes such as ¹³C or ¹⁸O or ²H etc

1 mark

b. Peak 31 corresponds to fragment CH₂OH⁺

1 mark

c. Propan-1-ol because of peaks 43 CH₃CH₂CH₂⁺, 31 CH₂OH⁺ etc and no peak at 45 COOH⁺

1 mark

d. A carbonyl stretch between 1670 and 1750 cm⁻¹ and different OH frequency for alcohol compared to carboxylic acid frequency

1 mark

e. Triplet at about a shift of 1 ppm

2 marks

f. 3 peaks

1 mark

Question 5 (7 marks)

Semi-structural formula of all the reactant(s) needed for the reaction	Semi-structural formula of organic product	Name of organic product	Type of reaction
CH ₂ =CH ₂ + H ₂ O	CH₃CH₂OH	ethanol	addition
CH ₃ CH ₃ + Br ₂ →	CH₃CH₂Br or other	bromoethane or other	substitution
CH ₃ CH ₂ CH ₂ OH + Cr ₂ O ₇ ²⁻ /H ⁺ →	CH₃CH₂COOH	propanoic acid	oxidation
CH ₂ =CHCl	-(CH ₂ CHCI) _n -	polyvinyl chloride	addition or polymerisation
CH ₃ CH ₂ CH ₂ CI + NH ₃ →	CH₃CH₂CH₂NH₂	1-aminopropane	substitution
СН₃ОН + НСООН	нсоосн₃	methyl methanoate	condensation or esterification
(CH ₃) ₂ CH=CH ₂	CH(CH ₃) ₃	2-methylpropane	hydrogenation

1 mark for each line correct

Question 6 (7 marks)

a.
$$\begin{array}{c} H \\ H \\ C - C - N \\ H \\ H \\ H \end{array}$$
 1 mark
$$\begin{array}{c} H \\ H \\ H \\ H \end{array}$$
 0
$$\begin{array}{c} O \\ C \\ C \\ H_2CNH_2\ CH_3 \\ H_2NCHCONHCHCOOH \ or \ the \ reverse \end{array}$$
 1 mark

C.

Structure	Type(s) of bonding	
Primary	Covalent or peptide	
Secondary	H-bonding	
Tertiary	H-bonding, dipole-dipole, disulfide, ion-dipole etc	

3 marks

CH₂COO⁻ │ H₂NCHCOO¨

2 marks

Question 7 (7 marks)

а

d.

2 marks

Strand i -CTATCGGA--GATAGCCT-

1 mark

Strand ii

-CTCTCGGA- Any answer with more than 4 GC base pairs

-GAGAGCCT- 1 mark

Strand iii — CTATCA- Strand iii must be shorter than strand i.

-GATAGT- 1 mark

