

Unit 3 CHEMISTRY

Answers

Section A –	Multiple	choice of	uestions	(20	marks)
				v -v	

1. A	6. B	11. D	16. D
2. A	7. C	12. B	17. A
3. D	8. B	13. D	18. C
4. A	9. D	14. C	19. B
5. B	10. B	15. D	20. C

Section B – Written questions (48 marks)

Question 1.

(a) ester

(b)
$$C_4H_{10}O(l) + C_3H_6O_2(l) \rightarrow C_7H_{14}O_2(l) - H_2O(l)$$

- (c) $CH_3CH_2COOCH_2CH_2CH_2CH_3$
- (d)

- (e) condensation or esterification reaction
- (f) hydrolysis
- (g) isomers

[©] John Wiley & Sons Australia, Ltd

7 marks

Question 2.

(a) D

(b) percentage of C =
$$\frac{6}{6+10+6+9} \times 100\%$$

- (c) change of operating conditions such as type of solvent, pressure, temperature etc.
- (d) Biological molecules are likely to be heat sensitive.
- (e) A and B peaks because they have similar retention times
- (f) 'spiking' or adding amyl nitrate to the original sample and observing change or appearance of peaks
- (g) GC to separate mixtures into pure component peaks for a more informative MS

7 marks

- Question 3.
- (a) Calculate the mass of nickel salt needed.

Carefully transfer the weighed salt to a volumetric flask that has been rinsed with deionised water.

Dissolve the salt in a small amount of deionised water, make up to the mark and shake.

(b)
$$n = c \times V$$

$$n = 0.100 \times 100.00 \times 10^{-3} = 0.001 \ 00 \ \text{mol}$$

 $m = n \times M = 0.001 \ 00 \ \text{mol} \times 182.71 \ \text{g mol}^{-1}$

$$m = 0.183 \text{ g}$$

- (c) Change the hollow cathode tube from sodium to nickel.
- (d) AAS uses lamps which detect only specific metals so there will be no interference due to the presence of other metals in the determination.
- (e) mass of nickel = 300×0.100 mg = 0.0300 g

(f) percentage of nickel =
$$\frac{0.0300}{3.600} \times 100\%$$

= 0.833%

6 marks

Question 4.

[©] John Wiley & Sons Australia, Ltd

(a)
$$H_3PO_4(aq) = 3KOH(aq) \rightarrow K_3PO_4(aq) + H_2O(l)$$

(b) $n = c \times V = 0.0887 \text{ mol } L^{-1} \times 22.34 \times 10^{-3} \text{ L}$
 $= 1.98 \times 10^{-3} \text{ mol}$
(c) $n(H_3PO_4) = \frac{1}{3} \times n(KOH)$
 $= 6.61 \times 10^{-4} \text{ mol}$
(d) $c = \frac{n}{V} = \frac{6.61 \times 10^{-4}}{20.00 \times 10^{-3}}$
 $= 0.0330 \text{ mol } L^{-1}$
therefore original concentration

$$= 0.0330 \times \frac{250}{25} = 0.330 \text{ mol } \text{L}^{-1}$$

(e) 32.4 g L-1

Question 5.

- (a) IR or NMR etc.
- (b) $CH_3CH_2CH_2CH_3$ and $(CH_3)_2CHCH_3$
- (c) alkanes
- (d) $C_4H_{10}(g) + Cl_2(g) \rightarrow C_4H_9Cl(g) + HCl(g)$

Question 6.

Molecule	Corresponding NMR
CH ₂ FCH ₂ Cl	А
CH ₃ COOCH ₃	В
(CH ₃) ₂ CHCl	D
CH ₃ CH ₂ OH	С

5 marks

4 marks

4 marks

Question 7.

(a) 1-chloropropane or 2-chloropropane

- (b) This compound has isomers.
- (c) $C_2H_4(g) + HCl(g) \rightarrow C_2H_5Cl(g)$
- (d) $C_2H_5Cl(g) + NaOH(aq) \rightarrow C_2H_5OH(aq) +$

NaCl(aq)

(e) substitution or hydrolysis

Question 8.

- (a) 1. pentane 2. ethanol 3. methanoic acid
- (b) molecule B
- (c) molecules B and C
- (d) molecule E
- (e) any substitution reaction with products such as CH₃CH₂CH₂CH₂CH₂Cl
- (f) molecule E
- (g) molecule F
- (h) molecules B and C

10 marks

5 marks

Notes: