aced

Units 3&4 Biology Trial Exam 2024 – Assessment Guide

Section A

VCAA Key Knowledge

Question

Answer Guide

nucleic acids as information molecules that encode instructions for the synthesis of proteins: the structure of DNA, the three main forms of RNA (mRNA, rRNA and tRNA) and a comparison of their respective nucleotides	Que Pro trar A. B. C. D.	estion 1 otein synthesis can be separated into two main processes: nscription and translation. During translation, mRNA molecules bring amino acids to the ribosomes. RNA polymerase forms a complementary mRNA molecule to the template strand of the gene. codons and anticodons match up at the ribosomes. amino acids join in a hydrolysis reaction to form a peptide chain.			Codons on an mRNA molecule match up with their corresponding anticodons, which are attached to tRNA molecules, during translation. A is incorrect as tRNA, not mRNA, carries amino acids to the ribosomes. B is incorrect as it occurs during transcription, not translation. D is incorrect as the reaction is a condensation polymerisation reaction, not a hydrolysis reaction.
the use of enzymes to manipulate DNA, including polymerase to synthesise DNA, ligase to join DNA and endonucleases	Question 2 Biologists make use of several enzymes in the ma DNA. Which option correctly matches the enzym function?		zymes in the manipulation of the enzyme to its	B	A is incorrect as it is RNA polymerase that synthesises mRNA. C is incorrect because it is DNA polymerase that
to cut DNA	R.		ioins strands of DNA	-	synthesises DNA. D is
	C.	RNA polymerase	synthesises a complementary strand of DNA initiates the synthesis of		incorrect as endonucleases (restriction enzymes) cut DNA. DNA ligase joins strands of DNA together.
	υ.	endonucleases	DNA		

Use the following information to answer Questions 3 - 5. Some biology students wish to test the effect of temperature on rates of photosynthesis in a particular C3 plant. The rate of oxygen production is used to measure rates of photosynthesis. The following graph of results is produced.

Figure 1

Question 3

What can be concluded from the information in the graph in Figure 1?

- **A.** At temperatures higher than 45°C, the active sites of enzymes involved in photosynthesis are altered.
- **B.** The optimum temperature for photosynthesis for this plant is 55°C.
- **C.** At temperatures beyond 45°C, the primary structure of enzymes involved in photosynthesis begins to break down.
- **D.** No photosynthesis will occur at temperatures below 20°C.
- A t temperatures beyond 45°C, the rate of oxygen production reduces rapidly. This is due to the denaturation of enzymes due to high temperatures. Denaturation affects the tertiary structure of an enzyme, but the primary structure remains intact.

affect the rate of photosynthesis: light availability, water availability, temperature and carbon dioxide concentration

the general factors

enzyme function in

cellular respiration:

that impact on

relation to photosynthesis and

changes in temperature, pH,

concentration,

competitive and

non-competitive enzyme inhibitors

the factors that

amino acids as the monomers of a polypeptide chain and the resultant hierarchical levels of structure that give rise to a functional protein

the role of Rubisco in	Question 4	С	In C4 plants, carbon
photosynthesis, including adaptations of C3, C4 and CAM plants to maximise the efficiency of photosynthesis	 If the students tested a C4 plant, rather than a C3 plant, how would the graph in Figure 1 be likely to differ? A. The optimum temperature for photosynthesis would be much lower due to an increase in photorespiration. B. Rates of photosynthesis would be higher at high temperatures due to an increase in photorespiration. C. Rates of photosynthesis would be higher at some temperatures due to the separation of carbon fixation and the rest of the Calvin Cycle. D. Photosynthesis would occur at higher temperatures 		fixation is separated from the rest of the Calvin cycle by location. This limits photorespiration, increasing rates of photosynthesis. Option D describes an adaptation of CAM plants, not C4 plants.
	because the stomata would only open at hight.		
identify and analyse experimental data qualitatively, handing where appropriate concepts of: accuracy, precision, repeatability, reproducibility and validity of measurements; errors (random and systematic); and certainty in data, including effects of sample size in obtaining reliable data	 Question 5 Which of the following measures would increase the validity of the students' experiment? A. increasing the number of samples tested B. using a range of different types of plants C. keeping the pH conditions of the samples the same D. using a different thermometer for each sample 	С	For an experiment to be valid, the only variable influencing the dependent variable (rate of photosynthesis) should be the independent variable (temperature). This can be achieved by ensuring that all other variables are controlled.

the main inputs,	Que	estion 6	D	Glycolysis occurs in the
outputs and locations of	In a	erobic cellular respiration, which process(es) do not		cytoplasm, while the Krebs
glycolysis, Krebs	req	uire the mitochondria?		cycle and the electron
Cycle and electron	Α.	the Krebs Cycle only		transport chain occur in the
including ATP yield	В.	the Krebs Cycle and glycolysis		mitochondria.
(details of	C.	the electron transport chain		
pathway	D.	glycolysis only		
mechanisms are not required)				

the function of	Question 7	В	A CRISPR array occurs
bacteria and the	CRISPR technologies offer many more opportunities for gen	etic	naturally in bacteria as a
application of this	engineering. A CRISPR array occurs naturally in		defence against
function in editing	A. viruses, as a means to invade cells.		bacteriophages (viruses
genome	B. bacteria, as a defence mechanism against bacteriophage	jes.	that infect bacteria).
	C. eukaryotes, as a defence against viruses.		
	D. most living cells, as a defence against bacteria.		

Use the following information to answer Questions 8 - 10. An open wound, if left untreated, can lead to a potentially serious skin infection called cellulitis. This can occur through an infection by the extracellular bacterium *streptococcus*, which enters through a break in the skin.

physical, chemical and microbiota barriers as preventative mechanisms of pathogenic infection in animals and plants	Question 8The human immune system includes physical, chemical and microbiota barriers to the entry of pathogens. Which option below correctly identifies the type of barrier provided by intactskin and identifies another example of this type of barrier?A. physical; mucus membranes in airwaysB. physical; lysozymes in tearsC. chemical; mucus membranes in airwaysD. chemical; lysozymes in tears	A	Intact skin is a physical barrier against pathogens, and the mucus membranes lining the airways are another example. Lysozymes in tears are a chemical barrier.
the innate immune response including the steps in an inflammatory response and the characteristics and	Question 9Upon infection and detection by the body of <i>streptococcus</i>, which of the following would occur first?A. Neutrophils would be recruited to the area of infection.	D	Mast cells, located near surfaces and other likely entry points for pathogens, release histamine when a

- B. Infected cells would release interferons.
- C. Natural killer cells would destroy the bacterial cells.
- D. Mast cells would release histamine.

D. Y, W, Z, X.

roles of macrophages,

neutrophils,

dendritic cells,

eosinophils, natural killer cells, mast

cells, complement

proteins and

interferons

entry points for pathogens, release histamine when a pathogen is detected. This initiates the inflammatory response, which includes the recruitment of other immune cells like neutrophils to the area. Natural killer cells target infected cells rather than extracellular bacteria, and interferons are released by body cells infected with a virus.

uses and	Question 10	С	Photosynthesis in crops
applications of angerobic	The production of biofuels such as ethanol requires several		converts carbon dioxide
fermentation of	steps.		into glucose. These crops
biomass for biofuel			are harvested for biomass.
production	In no particular order, some of these steps include:		The biomass is fermented
	W: Fermentation of biomass.		to produce natural oils,
	X: Blending of natural oils with fossil fuels to create		which are blended with
	commercial biofuel.		fossil fuels to produce
	Y: Harvesting of crops for biomass.		commercial biofuel.
	Z: Photosynthesis to produce glucose from carbon dioxide.		
	The correct order of the four steps listed is		
	A. Z, X, Y, W.		
	B. Y, W, X, Z.		
	C. Z, Y, W, X.		

causes of changing Qu allele frequencies in a population's gene pool, including pol environmental

selection pressures,

genetic drift, gene flow and mutations

as the source of new

alleles

Question 11

Several factors contribute to the allele frequencies within a population. Gene flow is best defined as the

- A. transfer of genetic material between populations.
- **B.** changes in allele frequencies as a response to selection pressures.
- **C.** reduction in genetic diversity after a natural disaster and subsequent population reduction.
- D. loss of alleles from a population due to chance events.

A Gene flow refers to the transfer of alleles between populations. Option B describes natural selection, option C describes a bottleneck, and option D describes genetic drift.

Use the following information to answer Questions 12 and 13. Figure 2 shows an artist's impression of the extinct species *Pakicetus. Pakicetus* was a species of amphibious whale that lived around 50 million years ago. Fossils of this species are notable as they show the pathway of evolution of land mammals to sea mammals.

Figure 2
Source: https://www.forbes.com/sites/shaenamontanari/2015/11/17/four-famous-transitional-fossils-that-support-evolution

changes in species over geological time as evidenced from the fossil record: faunal (fossil) succession, index and transitional fossils, relative and absolute dating of fossils	 Question 12 Fossils such as those of <i>Pakicetus</i>, that show the evolution between major taxonomic groups, are described as A. index fossils. B. transitional fossils. C. reference fossils. D. absolute fossils. 	В	Transitional fossils show the evolution between major taxonomic groups, such as from dinosaurs to birds or fish to amphibians.
evidence of relatedness between species: structural morphology – homologous and vestigial structures; and molecular homology – DNA and amino acid sequences	 Question 13 The evolutionary link between today's whales and species such as <i>Pakicetus</i> is supported by the fact that whale skeletons contain small hind limbs and a pelvis, despite whales lacking hind legs. This is an example of a A. homologous structure. B. vestigial structure. C. remnant structure. D. phylogenetic structure. 	В	A vestigial structure is one that a species inherited from an ancestor but no longer fulfils any function to the species. Other examples include the tailbone of humans and the eyes of blind cavefish.

the genetic code as a universal triplet code that is degenerate and the steps in gene expression, including transcription, RNA processing in eukaryotic cells and translation by ribosomes	 Question 14 A particular gene consists of 600 base pairs. The gene is transcribed and translated to form a polypeptide chain which will consist of A. more than 200 amino acids. B. fewer than 200 amino acids. C. exactly 200 amino acids. D. exactly 300 amino acids. 	В	Three base pairs code for one amino acid. Due to the STOP codons, and splicing out of introns during post- transcription modification, the final mRNA molecule will contain fewer than 600 base pairs. Therefore, the polypeptide chain will have fewer than 200 amino
			acids.
the innate immune response including the steps in an inflammatory response and the characteristics and roles of macrophages, neutrophils, dendritic cells, eosinophils, natural killer cells, mast cells, complement proteins and interferons	 Question 15 The human immune system consists of both immune cells and complement proteins. One method by which the complement system may attack external pathogens is by causing them to lyse. This occurs through which of the following? A. the formation of a membrane attack complex B. the release of interferons C. apoptosis of the invading pathogen D. the release of histamine 	A	In a membrane attack complex, complementary proteins punch a hole in the extracellular pathogen, which allows fluid to enter, causing it to lyse (burst).
the basic elements of gene regulation: prokaryotic trp operon as a	Question 16 Figure 3 shows a simplified diagram of the <i>trp</i> operon, which is found in eukaryotes such as <i>E. coli</i> .	D	When levels of free tryptophan are high, tryptophan binds to a

repressor molecule. This

changes the shape of the

allowing it to bind to the

operator, and preventing

transcribing the trp genes.

In autoimmune diseases,

the immune system attacks

RNA polymerase from

repressor molecule,

presentation, the	Α.	Histamine is released from mast cells to cause an	self-tissue.
distinction between		inflammatory response.	
non-self antigens,	В.	T helper cells are absent.	
cellular and non-	C.	Certain self-tissues are misidentified as "non-self" by the	
and allergens		immune system.	

trpE

Figure 3

If levels of free tryptophan were high in the cell, which of the

A. Tryptophan would bind directly to the operator region.

A repressor molecule would bind to the promotor region.

RNA polymerase would transcribe the *trp* genes.

Tryptophan would bind to a repressor molecule.

What is the general cause of most autoimmune diseases?

trpD

trpC

trpB

trpA

С

D. IgE antibodies attach to mast cells.

promoter operator leader

following would occur?

Β.

C.

D.

Question 17

simplified example

of a regulatory

initiation of an

immune response,

including antigen

process

ACED Units 3&4 Biology Trial Exam – Assessment Guide © ACED 2024. This exam is only licenced to the purchasing school. Page 6 of 30

Use the following information to answer Questions 18 and 19. Figure 4 shows a bacterial plasmid. This plasmid contains recognition sites for the restriction enzymes EcoRI, HindIII and BamHI. These plasmids are mixed with the BamHI restriction enzyme and a particular gene of interest that is to be used to transform certain bacteria. These bacteria do not naturally have resistance to either ampicillin or tetracycline.

Figure 4

the use of	Qu	estion 18	Α	Only bacteria that have
recombinant	Wh	at is the significance of the ampicillin resistance gene in the		incorporated the plasmids
to transform	chosen plasmid?			will be resistant to
demonstrated by the production of	Α.	Only bacteria that have incorporated the plasmids will be resistant to ampicillin.		ampicillin. However, this will be true regardless of
human insulin	В.	Only bacteria that have incorporated the recombinant plasmids will be resistant to ampicillin.		whether the plasmids are recombinant or not, as the
	C.	Only bacteria that have not incorporated any plasmids will be resistant to ampicillin.		ampicillin resistant gene is located outside of the
	D.	The ampicillin resistance gene does not affect the bacteria.		restriction site of BamHI.
the use of	Qu	estion 19	D	Regardless of whether the
plasmids as vectors	Wh	en the plasmids are mixed with bacteria, which bacteria		plasmids have incorporated
to transform	WO	uld be transgenic organisms?		the foreign gene or not,
bacterial cells as demonstrated by the	Α.	the bacteria that have not incorporated any plasmids		since the bacteria do not

- **B.** the bacteria that have incorporated the recombinant plasmids
- **C.** the bacteria that have incorporated the non-recombinant plasmids
- D. both B and C

production of human insulin plasmids have incorporated the foreign gene or not, since the bacteria do not naturally contain antibioticresistant genes, any bacteria that have incorporated plasmids will contain DNA not normally found in their genome, so can be described as transgenic organisms.

the use of genetically modified and transgenic organisms in agriculture to increase crop productivity and to provide resistance to disease demonstrate ethical conduct when undertaking and reporting investigations	 Question 20 Using CRISPR to produce genetically modified organisms (GMOs) such as crops requires consideration of several ethical concerns. Which of the following addresses the concept of non-maleficence? A. Fair consideration should be given to the customs and beliefs of those receiving GMO crops. B. The use of GMOs should not result in any undue harm to individuals. C. Farmers who choose not to use GMO crops should be financially compensated. D. Food production companies should be transparent about their use of GMO crops. 	В	The principle of non- maleficence is the obligation to cause no harm.
the structure of genes: exons, introns and promoter and operator regions	Question 21When a gene is transcribed, the molecule of pre-mRNAproduced undergoes a series of alterations before exiting thenucleus. Which of these do not occur as part of RNAprocessing?A. exons are spliced outB. an adenine tail is addedC. a guanine cap is addedD. introns are removed	A	Introns are spliced out (removed) during RNA processing, so the final mRNA molecule only contains exons.
manipulation of gene pools through selective breeding programs	Question 22Selective breeding programs, such as selecting crop varietiesfor the most desirable crop, alter the allele frequencies of apopulation. What is a common consequence of selectivebreeding?A. increased genetic diversityB. reduced population sizeC. a reduction in genetic diversityD. a bottleneck	С	Selective breeding programs generally reduce genetic diversity.
evidence of speciation as a consequence of isolation and genetic divergence, including Galapagos finches as an example of allopatric speciation and Howe palms on Lord Howe Island as an example of sympatric speciation	 Question 23 The Galapagos finches provide an example of rapid evolution through the isolation of populations. This is called A. convergent evolution. B. allopatric speciation. C. sympatric speciation. D. genetic drift. 	В	The evolution and speciation of the Galapagos finches is an example of allopatric speciation.

Use the following information to answer Questions 24 and 25. Radiocarbon dating is one technique used to measure the date of fossils. In radiocarbon dating, the ratio of carbon-14 to nitrogen-14 in the fossil is measured. Carbon-14 has a half-life of approximately 5,730 years. A particular fossil is found to have a carbon-14 to nitrogen-14 ratio of 1:3.

changes in species	Question 24	B Arc	atio of 1:3 means that
over geological time	What is the approximate age of the fossil?	two	half-lives have passed
the fossil record:	A. 5,730 years	(255	% C-14: 75% N-14). This
faunal (fossil)	3. 11,460 years	is ea	qual to 11,460 years
and transitional	C. 17,190 years	(stu	idents should be able to
fossils, relative and	D. 22,920 years	esti	mate this without a
absolute dating of		calc	culator based on the
<u>jussiis</u>		opti	ions given).
changes in species	Question 25		s is relative dating, and
over geological time as evidenced from	This fossil is used to infer the age of some	other fossils found in the	fossil is an index fossil,
the fossil record:	he same layer of sediment. What type of o	lating is this, and as it	t is used as a reference
faunal (fossil)	what is the fossil used to date the other for	sils referred to as? poir	nt for inferring the age
and transitional	A. absolute dating; transitional fossil	of n	earby fossils.
fossils, relative and	3. absolute dating; index fossil		
absolute dating of fossils	2. relative dating; transitional fossil		
· · · · · ·	D. relative dating; index fossil		
the use and	Question 26	B Spe	cies C and D diverge
interpretation of phylogenetic trees	igure 5 shows the evolutionary relationsh	ps between a earl	lier than species C and
as evidence for the	election of species.	А. Т	<i>Therefore, species C and</i>

selection of species. relatedness between

species

A. Therefore, species C and A are more closely related.

- What can be concluded from Figure 5?
- A. Species B has existed for longer than species C.
- Β. Species C is more closely related to species A than species D.
- **C.** Species E has undergone the most evolutionary change.
- Species B is more closely related to species C than species D. Α.

the development of immunotherapy strategies, including the use of monoclonal antibodies for the treatment of autoimmune diseases and cancer	 Question 27 Monoclonal antibodies are artificial proteins that are designed to target and treat specific diseases. Which of the following is not a process involved in the production of monoclonal antibodies? A. An antibody that is present on the desired target cell is identified and isolated. B. Mice or another laboratory species are used to produce B lymphocytes. 	A	An antigen, not an antibody, on the target cell is identified and isolated.
	C. Extracted B lymphocytes are fused with human myeloma cells.D. Hybridomas are formed, screened and selected.		
evidence for major trends in hominin evolution from the genus Australopithecus to the genus Homo: changes in brain size and limb structure	Question 28Homo habilis was a species of hominin, and an ancestor of Homo sapiens, that lived around 2 million years ago. A more recent ancestor of Homo sapiens is Homo neanderthalensis.Compared to Homo habilis, Homo neanderthalensis would haveA. a shorter stature.B. flatter feet.C. a more centrally positioned foramen magnum.D. a smaller cranium.	С	As hominins evolved, there was a trend towards the foramen magnum being positioned closer to the centre of the skull, as an adaptation for bipedalism.
ways of using fossil and DNA evidence (mtDNA and whole genomes) to explain the migration of modern human populations around the world, including the migration of Aboriginal and Torres Strait Islander populations and their connection to Country and Place	 Question 29 Much of our knowledge about hominin evolution and interactions between <i>Homo sapiens</i> and other hominin species comes from analysis of mitochondrial DNA (mtDNA). Which option below correctly compares mtDNA to nuclear DNA? A. mtDNA is influenced by recombination whereas nuclear DNA is not. B. Nuclear DNA has a higher mutation rate than mtDNA. C. mtDNA can replicate independently of the cell as a whole. D. mtDNA contains more genes than nuclear DNA. 	С	Since there are several mitochondria per cell, mtDNA can replicate independently of the cell, unlike nuclear DNA. mtDNA has a higher mutation rate and is not affected by recombination and fertilisation, making it useful for studying evolutionary relationships

proteins as a diverse	Verse Question 30			In this reaction, starch is
group of molecules that collectively	The	breakdown of starch into glucose is catalysed by <i>amylase</i> .		the substrate that binds to
make an organism's	In t	his reaction,		the active site of the
proteome, including	A. amylase is the enzyme and glucose is the substrate.			enzyme amylase, and
in biochemical	В.	amylase is the enzyme and starch is the substrate.		glucose is the product.
pathways	C.	starch is the enzyme and glucose is the product.		
	D.	amylase is the substrate and glucose is the product.		

the role of rough	Question 31	D	The gene to make a protein
endoplasmic reticulum Golai	Protein synthesis in eukaryotic cells contains many steps and		is transcribed in the
apparatus and	involves several organelles. Which option correctly orders the		nucleus. The mRNA
associated vesicles	organelles involved in protein synthesis?		molecule then travels to
in the export of proteins from a cell	A. nucleus, Golgi apparatus, ribosomes		the ribosomes, attached to
via the protein	B. ribosomes, nucleus, vesicle		the rough ER, where the
secretory pathway	C. Golgi apparatus, rough ER, vesicle		protein is translated. The
	D. nucleus, rough ER, Golgi apparatus		protein is then folded into
			its 3D structure at the Golgi
			apparatus and packaged
			into a vesicle for export
			from the cell.

Use the following information to answer Questions 32 and 33. An experiment is set up to test the effects of light intensity on rates of photosynthesis in algal balls. The vials are placed at various distances from a lamp and algal balls and pH indicators are added to each vial. The final pH of each solution after 45 minutes is recorded and the change in pH is calculated. pH is used to infer relative rates of photosynthesis and respiration, with photosynthesis producing a more alkaline solution and respiration producing a more acidic solution. Four vials are tested for each distance. The following results are produced:

Distance	Tes	Test 1		st 2	Test 3		Test 4			
of Vial from lamp (cm)	Starting pH	pH after 45min	Starting pH	pH after 45min	Starting pH	pH after 45min	Starting pH	pH after 45min	Average Change in pH	
10	7.8	8.0	7.8	8.2	7.8	8.2	7.8	8.4	+0.40	
20	7.8	9.2	7.8	8.9	7.8	9.2	7.8	9.3	+1.30	
30	7.8	8.8	7.8	8.6	7.8	8.6	7.8	8.6	+0.85	
40	7.8	8.4	7.8	7.8	7.8	8.2	7.8	8.0	+0.30	

Question 32

characteristics of the

selected scientific

methodology and

method, and appropriateness of

independent, dependent and

in the selected scientific investigation

controlled variables

the use of

What is the independent variable in this experiment?

- A. the number of vials
- **B.** the distance of the vials from the lamp
- **C.** final pH of the solutions
- D. average change in pH of each solution

B The distance of the vials from the lamp (and the resultant differences in light intensity) is the variable being deliberately changed. Therefore, this is the independent variable.

inputs, outputs and	Question 33	Α	The splitting of water
locations of the light	The process of photosynthesis that occurs in the algal balls		molecules in the light-
independent stages	contains several steps. Which of these occurs first?		dependent reactions at the
of photosynthesis in	A. Oxygen is released from the algal balls.		thylakoid membranes
C3 plants (details of	 B Carbon dioxide is fixed by enzymes 		releases oxvaen aas. which
pathway	 C Glucose is produced in the thylakoid membranes 		exits the algal balls Carbon
mechanisms are not	 Oursen is used in the electron transport shein 		dioxide is fixed in the light-
required)	D. Oxygen is used in the electron transport chain.		independent reactions
the general structure			where alucose is
of the biochemical			synthesized in the strong
pathways in			The electron transport
cellular respiration			chain refers to collular
from initial reactant			
to final product			respiration, not
			photosynthesis.
the general role of	Question 24	<u> </u>	NADDU carries er er er
enzymes and		L	hotwoon starses in
coenzymes in	A molecule that carries energy from one stage to another in		between stages in
facilitating steps in	photosynthesis is		photosynthesis. NADH
cellular respiration	A. NADH.		transfers energy in cellular
	B. NAD ⁺ .		respiration. NADP $^{+}$ is the
	C. NADPH.		unloaded version of
	D. NADP ⁺ .		NADPH.
			
the role of the lymphatic system in	Question 35	В	After engulfing and
the immune	The lymphatic system consists of organs and networks that		displaying the antigens of a
response as a	form the immune system. Which of the following would occur		pathogen on its surface,
transport network	at the lymph nodes, and which part of the immune response		antigen-presenting cells
lymph nodes as sites	does this form a part of?		travel to the lymph nodes,
for antigen	A. Antigens are recognised by B and T lymphocytes as part of		where their antigens are
recognition by T and	the innate immune response.		matched with T cell
Diymphocytes	B. Antigens are recognised by B and T lymphocytes as part of		receptors and B cell
	the adaptive immune response.		antibodies.
	C. Pathogens are engulfed by macrophages as part of the		
	innate immune response.		
	D. Pathogens are engulfed by macrophages as part of the		
	adaptive immune response.		
	· · ·		
the characteristics	Question 36	D	B cells produce antibodies,
and roles of the	T cells and B cells play important roles in the immune		not T cells. T cells target
adaptive immune	response. T cells and B cells differ in that		intracellular pathogens by
response against	A. only T cells produce antibodies.		causing infected cells to
both extracellular and intracellular	B. B cells target intracellular pathogens whereas T cells		undergo apoptosis. Both B
threats, including	target extracellular pathogens.		and T cells have the
the actions of B	C. only B cells have the capacity to differentiate into memory		capacity to differentiate
lymphocytes and their antibodies	cells		into memory cells.
helper T and	 D T cells initiate anontosis of infected cells whereas R cells 		<i>,</i>
cytotoxic T cells	do not		
1			

the human fossil record	Question 37	Δ	According to most of the
the human fossil record as an example of a classification scheme that is open to differing interpretations that are contested, refined or replaced when challenged by new evidence, including evidence for interbreeding between Homo sapiens and Homo neanderthalensis and evidence of new putative Homo species	 Question 37 Our understanding of human ancestry is constantly being updated as new evidence becomes available. Which option below most accurately describes our current understanding of the human evolutionary path? A. Most of the genetic diversity in today's humans can be traced to a small group of early <i>Homo sapiens</i> who spread out of Africa 55,000 – 200,000 years ago. B. Humans are more likely to have interbred with <i>Homo erectus</i> than <i>Homo neanderthalensis</i>. C. The human fossil record cannot provide any reliable information on our evolutionary history. D. Early <i>Homo sapiens</i> had much higher genetic diversity as a species compared to modern-day humans. 	A	According to most of the evidence provided by fossils and DNA evidence, today's humans can trace most of their ancestry back to a group of Homo sapiens that spread out of Africa.
the location, inputs and the difference in outputs of anaerobic fermentation in animals and yeasts	 Question 38 During periods of intense activity, human muscle cells may switch to anaerobic respiration. This form of respiration A. occurs in the mitochondria. B. requires the input of carbon dioxide. C. produces fewer net molecules of ATP. D. does not affect the pH of cells. 	С	Anaerobic respiration produces fewer net molecules of ATP compared to aerobic respiration. It occurs in the cytoplasm, produces carbon dioxide and lowers the pH of cells through the production of lactic acid.
amplification of DNA using polymerase chain reaction and the use of gel electrophoresis in sorting DNA fragments, including the interpretation of gel runs for DNA profiling	 Question 39 Gel electrophoresis is a technique used to separate fragments of DNA. Which of the following is correct for gel electrophoresis? A. DNA fragments move towards the negative terminal of the electrophoresis tank. B. Larger fragments of DNA move faster through the gel. C. The smaller fragments of DNA will be located closer to the positive terminal of the electrophoresis tank. D. DNA moves through the electrophoresis gel because DNA is positively charged. 	С	DNA is negatively charged, so when a current is applied to the electrophoresis tank, DNA will move towards the positive terminal. Smaller fragments of DNA move faster, so at the end of the run will be located closer to the positive terminal.
scientific and social strategies employed to identify and control the spread of pathogens, including identification of the pathogen and host, modes of transmission and measures to control transmission vaccination programs and their role in maintaining herd immunity for a specific disease in a human population	 Question 40 A small community is suffering from the spread of a disease caused by a form of bacteria. The disease is spread largely through ingestion of contaminated water. Which measure would be most effective at reducing the number of cases? A. Providing antiviral treatments to the community. B. Wearing facemasks. C. Quarantining visitors to the community in case they bring the disease. D. A vaccination program against the disease. 	D	Antivirals are ineffective against bacteria. Since the bacteria spread through ingestion, facemasks are unlikely to reduce the spread of disease. A vaccination program would be most effective.

Section B

Figure 6 depicts a process that occurs in most eukaryotic cells.

Marking Protocol:

One mark for each of the above points.

can no longer bind with their substrates.

in relation to photosynthesis and cellular respiration: changes in temperature, pH, concentration, competitive and non-competitive enzyme inhibitors

from 10°C to beyond

70°C.

the general	Question 1c (2 marks)	Answer:
factors that impact on	Consider your answer	 There would be no change in the rate of reaction – it would remain low
enzyme function	to Question 1b. What	or non-existent.
in relation to	would the effect on the	 This is because the denaturation of enzymes is an irreversible
photosynthesis and cellular	rate of reaction be if	process/permanent.
respiration:	the temperature were	
changes in	then to be reduced to	Marking Protocol:
concentration,	25°C following the	One mark for each of the above points.
competitive and	increase beyond 70°C?	
non-competitive	Explain your answer.	
chzynie innibitors		
the factors that	Question 1d (1 mark)	Answer:
affect the rate of	Identify a factor, other	 Increased glucose availability.
respiration:	than temperature, that	• Increased oxygen concentration.
temperature,	would <i>increase</i> the rate	• Increased enzyme concentration.
glucose availability and	of the reaction referred	,
oxygen	to in Figure 6.	Marking Protocol:
concentration		One mark for any of the above points.
CRISPR-Cas9 c	an be utilised as a genome	e editing tool.
the function of	Question 2a (3 marks)	Answer:
bacteria and the	What type of	 CRISPR-Cas9 is sourced from bacteria.
application of this	organisms is CRISPR-	 In bacteria it acts as a defence mechanism against bacteriophages
function in editing an	Cas9 sourced from?	(viruses that invade bacteria).
organism's	Briefly describe the	 It does this by storing a copy of some of the bacteriophages/viral DNA,
genome	role it plays in this	which it will then recognise and destroy if the cell is infected again in the
	organism.	future.
		Marking Protocol:
		One mark for each of the above points.
the function of		
CRISPR-Cas9 in	Question 2b (4 marks)	Answer:
bacteria and the	Describe the steps	• Synthetic guide RNA is created that has a complementary spacer to the
application of this	involved in using	target DNA that is to be cut.
editing an	CRISPR-Cas9 for gene	• The guide RNA is mixed with a Cas-9 enzyme and a suitable
organism's genome	editing.	complementary PAM sequence to create a CRISPR-Cas9 complex. This is injected into a cell.

- The Cas9 finds the target PAM sequence and cuts the selected sequence of DNA with a blunt cut.
- While the cell attempts to repair the cut DNA, selected nucleotides that scientists wish to introduce to the cell can be introduced.

Marking Protocol:

One mark for each of the above points.

analyse and evaluate bioethical issues using relevant approaches to bioethics and ethical concepts, including the influence of social, economic, legal and political factors relevant to the selected issue Question 2c (3 marks) Outline the consequences-based approach to bioethics and describe how it might be used to argue in favour of researching CRISPR-Cas9 utilising mice rather than humans.

Answer:

- The consequences-based approach aims to maximise positive outcomes while minimising negative outcomes.
- Editing the genome of mice in experimental studies rather than humans means that any unexpected negative outcomes of such experiments are limited to animal subjects, rather than humans, which could be argued is aiming to minimise negative outcomes for humans.
- It could also be argued that the benefit that might be obtained from this research in terms of its applications to humans in areas such as disease and health, maximises positive outcomes.

Marking Protocol:

One mark for each of the above points.

Note: Any other correct examples of how CRISPR-Cas9 could maximise positive outcomes and minimise negative outcomes in relation to the use of mice rather than humans should be awarded marks.

Figure 8 compares the skeletons of two extinct hominin species.

Species 1

Species 2

Figure 8

Source: Adapted from www.timesofisrael.com

Answer:

evidence for major trends in hominin evolution from the genus Australopithecus to the genus Homo: changes in brain size and limb structure

the human fossil record as an example of a classification scheme that is open to differing interpretations that are contested, refined or replaced when challenged by new evidence, including evidence for interbreeding between Homo sapiens and Homo neanderthalensis and evidence of new putative Homo species

Question 3a (4 marks) Which species (1 or 2) would you consider to be the more recent ancestor of *Homo sapiens*? Give reasons for your answer, referring to three different features and how they relate to the trends in hominin evolution.

• Species 1 is a more recent common ancestor.

- Species 1 has a larger cranial capacity, inferring a larger brain size. As hominins evolved over time, there was a trend towards a larger-sized brain.
- Species 1 has a less robust jaw than species 2. As hominins evolved, there was a trend towards smaller jaw and teeth to coincide with an omnivorous diet.
- The arms of species 2 are longer in comparison to the rest of the body than species 1. This suggests that species 1 was more exclusively bipedal.

Marking Protocol:

One mark for each of the above points. Note: other suitable features may be described, provided they are shown in the images.

:1 6		
evidence for	Question 3b (2 marks)	Answer:
hominin evolution	As hominins evolved,	 Meat is much more nutrient-dense than plant matter, particularly as a
from the genus	there was a trend	source of protein.
Australopithecus	towards a diet that	• Therefore, a diet that included meat would have provided energy to fuel
to the genus Homo: chanaes in	included meat, rather	a larger brain, which in turn would likely increase in the cognitive
brain size and	than exclusively plants.	capacity/functioning of hominins.
limb structure	Explain how this	
	transition would have	Marking Protocol:
	contributed to their	One mark for each of the above points.
	evolutionary success.	
causes of	Question 3c (2 marks)	Answer:
changing allele frequencies in a population's gene	According to genetic	 Gene flow is the transfer of genetic material between populations,
	analysis, significant	through immigration and emigration.
pool, including	gene flow occurred	• Gene flow can increase the genetic diversity of a population because
environmental selection	between hominin	immigration introduces new alleles into the population's gene pool.
pressures, genetic	populations. Describe	
drift, gene flow	gene flow and explain	Marking Protocol:
ana mutations as the source of new	how it can increase a	One mark for each of the above points.
alleles	population's genetic	
	diversity.	
biological conseauences of	,	
changing allele		
frequencies in		
terms of increased and		
decreased		
genetic diversity		

A group of biology students are interested in comparing the effectiveness of various antibacterial agents on their capacity to prevent the growth of *E. coli*. Certain strains of *E. coli* can cause gastrointestinal problems and tend to spread through contaminated food.

The students select three different antibacterial agents: ampicillin, bleach and Dettol. They set up the experiment according to the following method:

Method

- 1. Collect four nutrient agar plates. Label one plate as a control.
- 2. On the remaining three plates, draw three circles and label them with the three antibacterial agents (refer to the figure below).
- 3. Swab the control plate with *E. coli* broth.
- 4. Repeat for the remaining three plates.
- 5. Soak three filter paper discs in each of the three antibacterial agents.
- 6. In three of the plates, place one filter paper disc from each antibacterial agent in the corresponding circle. The control plate is left blank.
- 7. Incubate the plates at 37°C for 24 hours.
- 8. Remove from the incubator and measure the zone of inhibition (ZOI) around each disc (the radius of the circle in which there is no growth).

The following results were recorded:

Antibacterial Agent	Average ZOI (mm)
Ampicillin	11
Bleach	7
Dettol	6

characteristics of	Question 4a (2 marks)	Answer:
the selected scientific	Identify the	 The independent variable is the antibacterial agent used.
methodology and	independent and	• The dependent variable is the zone of inhibition (the area around which
method, and	dependent variables in	there is no bacterial growth).
of the use of	this experiment.	
independent,		Marking Protocol:
dependent and		One mark for each of the above points.
variables in the		
selected scientific		
investigation		

characteristics of		•
characteristics of the selected scientific methodology and method, and appropriateness of the use of independent, dependent and controlled variables in the selected scientific investigation	Question 4b (1 mark) What was the purpose of the control plate in this experiment?	 Answer: To act as a comparison to ensure that there were no other bacteria contaminating the agar plates, so that any bacterial growth could be attributed to E. coli growth / to determine the effect of changing the antibacterial agents by acting as a baseline. Marking Protocol: One mark for the above point.
the nature of evidence that supports or refutes a hypothesis, model or theory	Question 4c (1 mark) What can be concluded from the students' results?	 Answer: According to the results, ampicillin was the most effective of the three antibacterial agents at inhibiting the growth of E. coli.
use reasoning to construct scientific arguments, and to draw and justify conclusions consistent with the evidence and relevant to the question under investigation		One mark for the above point.
the innate immune response including the steps in an inflammatory response and the characteristics and roles of macrophages, neutrophils, dendritic cells,	Question 4d (3 marks) When a person suffers an infection of pathogenic bacteria, the immune system responds. The initial response is typically the inflammatory	 Answer: Mast cells detect the entry of a pathogen and release histamine. Histamine acts to recruit other immune cells to the site of infection and to make blood vessels more permeable, often causing redness and swelling. The invading pathogen is then destroyed through the actions of immune cells and complement proteins.
eosinophils, natural killer cells, mast cells, complement proteins and interferons	response. Outline the process of the inflammatory response.	Marking Protocol: One mark for each of the above points.

identify and analyse experimental data qualitatively, handing where appropriate concepts of: accuracy, precision, repeatability, reproducibility and validity of measurements; errors (random and systematic): and certainty in data, includina effects of sample size in obtaining reliable data

ZOI of ampicillin, the experimenters decided to omit one result as an outlier. Describe what an outlier is and what a potential cause of the outlier may be in this experiment.

Question 4e (2 marks)

When recording the

Answer:

- An outlier is a data point that does not follow the general trend of the results, such as being much higher or much lower in numerical value (typically due to either an error in measurement or the influence of an extraneous variable).
- The potential cause of the outlier could have been a measurement or recording error when the ampicillin ZOI was measured.

Marking Protocol:

One mark for each of the above points.

identify outliers, and contradictory or provisional data

the role of the
lymphatic system
in the immune
response as a
transport
network and the
role of lymph
nodes as sites for
antigen
recognition by T
and B
lymphocytes

the

characteristics and roles of the components of the adaptive immune response against both extracellular and intracellular threats, including the actions of B lymphocytes and their antibodies, helper T and cytotoxic T cells After infection by an extracellular pathogen like bacteria, the adaptive immune response is triggered. This allows the person to acquire long-term immunity to the pathogen. Describe this process, including the relevant cells and lymphoid organs.

Question 4f (5 marks)

Answer:

- A macrophage or dendritic cell engulfs the extracellular pathogen or its remains and displays its antigens on its surface, thus becoming an antigen-presenting cell (APC).
- The APC travels to the lymph nodes where it displays these antigens to naïve B cells and T helper cells until it encounters a B cell with complementary antibodies and a T helper cell with complementary receptors.
- The T helper cell signals to the naïve B cell to multiply, and it multiplies and differentiates into B plasma cells and B memory cells.
- The B plasma cells circulate the body, releasing antibodies that target the antigens of the pathogen, helping to immobilise or remove the pathogen.
- The B memory cells remain in the body, and upon any future encounter with the same antigens, rapidly multiply and differentiate into B plasma cells.

Marking Protocol:

One mark for each of the above points.

the differenceQuestion 4g (3 marks)between naturalExplain why the form ofand artificialimmunity described inactive andQuestion 4f is referredpassive strategiesto as active immunity.immunityDistinguish this frompassive immunity andactive immunity.

Answer:

- This is active immunity, as the body is exposed to antigens and is required to make its own antibodies and memory cells.
- Passive immunity occurs when the body receives a direct supply of antibodies from another source (such as from another organism).
- Passive immunity is less effective in the long term because memory cells are not created as part of this process (whereas they are in active immunity). Therefore, once the antibodies are out of the person's system, they no longer have immunity against any future infection.

Marking Protocol:

One mark for each of the above points.

consequences of bacterial resistance and viral antigenic drift and shift in terms of ongoing challenges for treatment strategies and vaccination against pathogens

causes of changing allele frequencies in a population's gene pool, including environmental selection pressures, genetic drift, gene flow and mutations as the source of new alleles Question 4h (3 marks) Scientists recommend against the unnecessary or excessive use of antibiotics, as this can increase bacterial resistance. Describe the process by which a population of bacteria may become resistant to a certain antibiotic, referring to the principles of natural selection.

explain why passive

effective in the long

immunity is less

term.

Answer:

- Due to genetic variation within the population, there are some bacterial cells that are, due to their genotype, resistant to antibiotics.
- These individuals have a selective advantage over others, as they can survive and reproduce in the presence of a specific antibiotic.
- When the resistant bacteria reproduce, they pass on their antibioticresistant genes to the next generation, which can lead to a population of resistant bacteria.

Marking Protocol:

One mark for each of the above points.

Haemoglobin is a protein found in animals and consists of four globular protein sub-units. The amino acid sequences of the protein sub-units mostly form alpha helices. In the body, haemoglobin plays an important role in transporting oxygen around the body for cellular respiration.

Because haemoglobin is found in such a wide variety of organisms, it is useful for comparing relatedness between species. The differences in amino acid sequences of the protein between different organisms can be used to infer evolutionary relationships.

The amino acid sequence of a highly conserved region of the haemoglobin protein was compared for three hypothetical species. The table below shows the sequence comparison for 20 amino acids.

Species A	phe val phe ser arg thr gly val asp cys pro arg thr trp gly ser thr val gly phe
Species B	phe thr phe ser arg thr gly phe asp cys pro arg thr trp gly ser thr val ser phe
Species C	phe val ala ser arg thr ser val gly cys pro ser thr trp gly ser thr val gly pro

amino acids as the monomers of a polypeptide chain and the resultant hierarchical levels of structure that give rise to a functional protein	Question 5a (4 marks) Using the information provided, describe the structure of haemoglobin in reference to the four hierarchical levels of protein structure.	 Answer: The primary structure is the sequences of amino acids that form the polypeptide sub-units of the protein. The secondary structure is the initial/regular coiling of the polypeptide chains into alpha helices. The tertiary structure is the 3D shape that the polypeptide chains are folded into, held in place by various chemical bonds between the amino acid R side chains/groups. The quaternary structure is the four sub-units that together form the haemoglobin protein.
		Marking Protocol:
		One mark for each of the above points.

nucleic acids as	Question 5b (3 marks)	Answer:
Information molecules that encode instructions for the synthesis of proteins: the structure of DNA, the three main forms of RNA (mRNA, rRNA and tRNA) and a	Like all proteins, the instructions for the synthesis of haemoglobin are encoded in the organism's DNA.	 RNA polymerase binds to the promoter region of the gene and moves along the template strand, building a complementary pre-mRNA molecule. RNA processing occurs, in which the introns are spliced out, a guanine cap is added, and a poly-A tail is added to the pre-mRNA molecule. The molecule of mRNA exits the nucleus and attaches to a ribosome.
comparison of their respective nucleotides	Describe the process in	Marking Protocol:
	which a copy of the	One mark for each of the above points.
the genetic code as a universal triplet code that is degenerate and the steps in gene expression, including transcription, RNA processing in eukaryotic cells and translation by ribosomes	relevant gene is taken to the ribosomes.	

nucleic acids as information molecules that encode instructions for the synthesis of proteins: the structure of DNA, the three main forms of RNA (mRNA, rRNA and tRNA) and a comparison of their respective nucleotides	Question 5c (2 marks) Describe the role of transfer RNA (tRNA) in the synthesis of haemoglobin.	 Answer: Molecules of tRNA are attached to amino acids in the cytoplasm. During translation at the ribosomes, the anticodons on tRNA align with the codons of the mRNA molecule, whereby tRNA brings the specific amino acids together in the correct order to form a polypeptide chain. Marking Protocol: One mark for each of the above points. 		
the genetic code as a universal triplet code that is degenerate and the steps in gene expression, including transcription, RNA processing in eukaryotic cells and translation by ribosomes	Question 5d (1 mark) Name the reaction that occurs to join the amino acids of the haemoglobin proteins together.	 Answer: This is a condensation polymerisation reaction. Marking Protocol: One mark for the above point. 		
the genetic code as a universal triplet code that is degenerate and the steps in gene expression, including transcription, RNA processing in eukaryotic cells and translation by ribosomes	Question 5e (2 marks) The DNA code can be described as both universal and degenerate. How do these terms apply to the synthesis of haemoglobin?	 Answer: The universal aspect of the DNA code means that the gene that encodes the haemoglobin protein will always encode the same protein, regardless of the organism. The degenerate nature of the DNA code refers to the fact that for most amino acids, multiple codons code for the same amino acid. This means that if there is a mutation during the transcription of the haemoglobin gene, it may not affect the final amino acid sequence. Marking Protocol: 		
		One mark for each of the above points.		
evidence of relatedness between species: structural morphology – homologous and vestigial structures; and molecular homology – DNA and amino acid sequences the use and interpretation of phylogenetic trees as evidence for the relatedness between species	Question 5f (1 mark) Use the information in the amino acid sequence comparison table above to place the three species on a phylogenetic tree.	Answer: Species C Species B Species A Marking Protocol: One mark for correctly placed species.		

evidence of relatedness between species: structural morphology – homologous and vestigial structures; and molecular homology – DNA and amino acid sequences	Question 5g (1 mark) DNA sequencing of genes can also be used to create phylogenetic	 Answer: Highly conserved genes are genes that are common across many different organisms.
	trees. These are usually "highly conserved" genes. Outline what a highly conserved gene is.	Marking Protocol: One mark for the above point.
amplification of DNA using polymerase chain reaction and the use of gel electrophoresis in sorting DNA fragments, including the interpretation of gel runs for DNA profiling	Question 5h (4 marks) Before a gene is sequenced for comparison, it is usually necessary to "amplify" the gene by making several copies of it. Name and describe the process used to achieve	 Answer: The process is polymerase chain reaction (PCR). The DNA strand to be copied is heated to 95°C to separate the two strands, then cooled to 55°C to allow the primers to anneal. The mixture is heated to 72°C and DNA polymerase/taq polymerase builds a complementary copy of each strand of DNA. The process is repeated many times to produce the desired amount of DNA.
	this.	Marking Protocol:
		One mark for each of the above points.

The Galapagos finches, which evolved on the Galapagos Islands after the migration of a single species to the islands, provide an excellent case study for speciation. Figure 8 illustrates some of the species that now exist on these islands, along with descriptions of their beaks and diets.

Source: https://cruise-tour.com/finches-galapagos/

evidence of speciation as a consequence of isolation and aenetic diveraence. including Galapaaos finches as an example of allopatric speciation and Howe palms on Lord Howe Island as an example of sympatric speciation

causes of changing allele frequencies in a population's gene pool, including environmental selection pressures, genetic drift, gene flow and mutations as the source of new alleles Question 6a (4 marks) Consider the evolution of the Woodpecker finch and the Medium ground finch from a common ancestor. Describe the process that would have led to the evolution of two separate species from this common ancestor.

Answer:

- Two populations of the ancestral species became separated by a geographical barrier so that no gene flow occurs between them.
- Each of the populations were exposed to different selection pressures. In this case, the selection pressure was largely due to its food source, with one species having access to foods that required crushing, and the other to foods that required probing.
- Over time, the beaks of the two species evolved to give them the greatest advantage in terms of food source.
- The two species became genetically different enough that if the two populations were brought together, they could no longer interbreed.

Marking Protocol:

One mark for each of the above points.

causes of changing allele frequencies in a population's gene pool, including environmental selection pressures, genetic	Question 6b (2 marks) Explain the significance of genetic mutations to the evolution of the Galapagos finches.	 Answer: Genetic mutations are the source of new alleles in a population that is isolated (no immigration or emigration). For the evolution of the finch species to occur, there needed to be variation in the alleles that control beak shape and size.
drift, gene flow		Marking Protocol
and mutations as the source of new alleles		One mark for each of the above points.
evidence of speciation as a consequence of isolation and genetic divergence, including Galapagos finches as an example of allopatric speciation and Howe palms on	Question 6c (2 marks) Distinguish between the type of speciation displayed by the Galapagos finches and the type of speciation displayed by the Howe palms on Lord Howe Island.	 Answer: The speciation shown by the Galapagos finches is allopatric speciation. This occurs when a species separates into separate populations that are isolated from one another, and the evolution of new species occurs as a result. The speciation shown by the Howe palms is sympatric speciation. This occurs when a single species separates into more than one new species while inhabiting the same geographic region.
Lord Howe Island		Marking Protocol:
as an example of sympatric		One mark for each of the above points.

speciation

Seedlings of three different plant species were exposed to three different environments to compare their growth in each environment. One of the three plant species was classified as a C3 plant, another as a C4 plant and the third as a CAM plant. The three environmental conditions were as follows:

Environment 1: 22°C with daily watering, exposed to natural light conditions.
Environment 2: 30°C with minimal water, exposed to natural light conditions.
Environment 3: 30°C with minimal water, exposed to 24-hour light.

Environment	Observations after two weeks			
Environment	Plant A	Plant B	Plant C	
1	Plant has grown and appears to be healthy	Plant has grown and appears to be healthy	Plant has grown and appears to be healthy	
2	Plant has grown and appears to be healthy	Plant has only grown a little and appears wilted and unhealthy	Plant has grown and appears to be healthy	
3	Plant has only grown a little	Plant has only grown a little and appears wilted and unhealthy	Plant has grown and appears to be healthy	

The following results were observed after two weeks under these conditions.

the role of Rubisco in photosynthesis, including adaptations of C3, C4 and CAM plants to maximise the efficiency of photosynthesis	Question 7a (4 marks) From the table of observations, identify each of the plants A, B and C as either the C3 plant, C4 plant or CAM plant. Give reasons for your answers, referring to their adaptations to different environments.	 Answer: Plant A is the CAM plant, plant B is the C3 plant and plant C is the C4 plant. Plant A is observed to grow well under hot dry conditions, but less so when exposed to 24-hour light. CAM plants separate carbon fixation from the rest of the Calvin cycle over time, by closing their stomata during the day to limit water loss and opening them at night to let carbon dioxide in. 24-hour light exposure may mean that plant A is not triggered to open its stomata, reducing photosynthesis and therefore growth under 24-hour light. Plant B is observed to have struggled to grow under hot, dry conditions. C3 plants do not have the adaptations of C4 and CAM plants to maximise photosynthesis and limit water loss under these environmental conditions. Plant C is observed to grow well under hot, dry conditions with both natural light conditions and 24-hour light conditions. C4 plants limit photorespiration by separating carbon fixation from the rest of the Calvin cycle over space, unlike C3 plants in which all the reactions occur in the struma.
		photorespiration by separating carbon fixation from the rest of the Calvin cycle over space, unlike C3 plants in which all the reactions occur in the stroma.
		Marking Protocol: One mark for each of the above points.

the role of Rubisco in photosynthesis, including adaptations of C3, C4 and CAM plants to maximise the efficiency of photosynthesis the factors that affect the rate of photosynthesis: light availability, water availability, temperature and carbon dioxide concentration	Question 7b (2 marks) Describe the role of Rubisco in photosynthesis and describe the effects of high temperatures on this process.	 Answer: The role of Rubisco is to fix carbon in the light-independent stage of photosynthesis. At high temperatures, Rubisco binds to O₂ more readily than it binds to CO₂, resulting in photorespiration. Marking Protocol: One mark for each of the above points.
evaluate investigation methods and possible sources of personal errors/mistakes or bias, and suggest improvements to increase accuracy and precision, and to reduce the likelihood of errors evaluate data to determine the degree to which the evidence supports the aim of the investigation, and make recommendations, as appropriate, for modifying or extending the	Question 7c (2 marks) Describe a limitation of the type of data collected in this experiment and suggest a modification of the investigation that may address this.	 Answer: The data is qualitative, so it is not easily statistically analysed / more subjective or may be prone to researcher bias. This could be addressed by measuring rates of photosynthesis quantitatively. Marking Protocol: One mark for each of the above points.

VCE UNITS 3&4 BIOLOGY

Written Examination **ANSWER SHEET** – 2024

Student name:

Use a PENCIL for ALL entries. For each question, shade the box which indicates your answer.

Marks will NOT be deducted for incorrect answers.

NO MARK will be given if more than ONE answer is completed for any question.

If you make a mistake, ERASE the incorrect answer – DO NOT cross it out.

1	A B C D	15	A B C D	29	A B C D
2	A B C D	16	A B C D	30	A B C D
3	A B C D	17	A B C D	31	A B C D
4	A B C D	18	A B C D	32	A B C D
5	A B C D	19	A B C D	33	A B C D
6	A B C D	20	A B C D	34	A B C D
7	A B C D	21	A B C D	35	A B C D
8	A B C D	22	A B C D	36	A B C D
9	A B C D	23	A B C D	37	A B C D
10	A B C D	24	A B C D	38	A B C D
11	A B C D	25	A B C D	39	A B C D
12	A B C D	26	A B C D	40	A B C D
13	A B C D	27	A B C D		
14	A B C D	28	A B C D		