aced

Unit 3 Biology Practice Exam 2024 – Assessment Guide

Section A

VCAA Key Knowledge

Question

nucleic acids as information molecules that encode instructions for the synthesis of proteins: the structure of DNA. the three main forms of RNA (mRNA, rRNA and tRNA) and a comparison of their respective nucleotides

Question 1

DNA, mRNA and tRNA all play important roles in protein synthesis. During the production of a protein, which of the following would occur during translation?

- A. the anticodon TAG on a tRNA molecule attached to an amino acid binds to the codon ATG on an mRNA molecule at a ribosome
- the codon UAC on a tRNA molecule attached to an amino B. acid binds to the anticodon AUG on an mRNA molecule at the ribosome
- C. the anticodon GGA on a tRNA molecule carrying an amino acid binds to the codon CCU on an mRNA molecule at a ribosome
- D. the anticodon UAC on an mRNA molecule carrying an amino acid binds to the codon AUG on a tRNA molecule at a ribosome

the ger univers is dege steps in includir RNA pr eukarv transla

Answer Guide

С

molecules, which carry amino acids, match up with the codons of an mRNA molecule at the ribosomes. A is incorrect because RNA contains uracil, not thymine. B is incorrect because tRNA molecules contain anticodons and mRNA molecules contain codons. D is incorrect because tRNA, not mRNA, is attached to amino acids.

During translation, the

anticodons of tRNA

netic code as a cal triplet code that	Qu	estion 2	Α	The degeneracy, or
nerate and the	Wh	ich of the following statements refers to the degenerate		redundancy, of the genetic
gene expression, ng transcription,	nat	ure of the DNA code?		code refers to the fact that
ocessing in otic cells and tion by ribosomes	A.	the codons UCU and UCC both code for the amino acid		multiple codons code for
		serine		the same amino acid.
	Β.	DNA is found in all living things		
	C.	the same gene will encode the same protein in different		Options B and C describe
		organisms		the universal nature of the
	D.	the codon CCG will always code for the amino acid		DNA code, while option D
		proline, regardless of the organism or species it occurs in		describes its unambiguous
				nature.

the structure of genes:	<u> </u>			
exons, introns and	Question 3			During post-transcriptional
promoter and operator	The se	equence of a particular gene in a DNA strand contains		modification, introns (non-
regions	640 tr	riplet codes. How many codons would the corresponding		coding regions of the gene)
	mRNA	A strand that leaves the nucleus have?		are spliced out of the pre-
	A. n	nore than 640 codons		mRNA molecule, meaning
	B. 6	540 codons		that the resultant mRNA
	C . 6	538 codons		strand is substantially
	D. fe	ewer than 640 codons		shorter than the original
				gene.
the use of enzymes to manipulate DNA.	Question 4			Endonucleases, or
including polymerase to	Variou	us enzymes, several of which are sourced from bacteria,		restriction enzymes, cut
join DNA and	are us	sed by scientists to manipulate DNA. Which of the		DNA at a specific sequence;
endonucleases to cut DNA	follow	ving correctly pairs the enzyme type with its application?		this can be used to cut
	A. e	endonucleases are used to cut DNA in the creation of		plasmids to insert a foreign
	r	ecombinant plasmids		gene.
	B. li	igase is used to separate DNA strands in electrophoresis		
	С. р	oolymerase is used to separate DNA segments in		Ligase joins DNA fragments
	р	preparation for electrophoresis		together, while polymerase
	D. li	igase adds free nucleotides to create a complementary		helps to synthesise DNA
	D	DNA strand in PCR testing		(for example, in PCR

the function of CRISPR-Question 5 В *Guide RNA, which can be* Cas9 in bacteria and the CRISPR-Cas9 offers exciting potential for genetic engineering. synthetically produced for application of this function in editing an What is the role of guide RNA in CRISPR? genetic engineering organism's genome applications, has a A. to signal to Cas1 and Cas2 to extract a protospacer from complementary spacer to invading DNA the segment of DNA that is **B.** to bind to Cas9 to create a CRISPR-Cas9 complex to be cut and binds with C. to cleave foreign DNA at a recognised sequence Cas9 to form a CRISPR-Cas9 **D.** to add a spacer to the CRISPR array complex. *The PAM sequence signals* to Cas1 and Cas2 to extract a protospacer from invading DNA. Cas1 and *Cas2 then introduce this* protospacer to the CRISPR array, where it becomes a

testing).

spacer. Cas9 cleaves DNA.

ACED Unit 3 Biology Practice Exam – Assessment Guide © ACED 2024. This exam is only licenced to the purchasing school. Page 2 of 19

Use the following information to answer Questions 6-8. Figure 1 shows a sequence of processes that occur in the cells of mammals along with some of their inputs and outputs.

Question 6

the main inputs, outputs

glycolysis, Krebs Cycle and electron transport

chain including ATP yield the general structure of

and locations of

the biochemical pathways in

product

photosynthesis and

cellular respiration from

initial reactant to final

Where in the cell does Process B occur?

- A. in the cytoplasm
- **B.** in the stroma of a chloroplast
- C. in the mitochondrial matrix
- D. on the inner membrane of the mitochondria
- *C* Process B represents the Krebs cycle of aerobic cellular respiration, which occurs in the mitochondrial matrix.

which the enzymes that are

begin to denature. Beyond

this temperature, the rate

of reaction reduces rapidly

as the enzymes can no

longer catalyse their

controlling the process

the location, inputs and the difference in outputs of anaerobic fermentation in animals and yeasts	Question 7	D	Cellular respiration in
	How would the sequence of processes depicted in Figure 1		prokaryotes is usually
	differ in most prokaryotic cells?		anaerobic and only consists
	A. it would only consist of Process A and the overall net yield		of glycolysis (process A).
	of ATP would be higher		The net yield of ATP in
	it would only consist of Processes A and B and the net		anaerobic respiration is
	yield of ATP would be lower		two molecules of ATP per
	C. it would only consist of Process C, but oxygen would not		molecule of glucose, which
	be an input		is much lower than the net
	D. it would usually only consist of Process A and the overall		yield in aerobic respiration.
	net yield of ATP would be lower		
the factors that affect the	Question 8	С	Increasing the temperature
respiration: temperature,	The temperature of the processes in <i>Figure 1</i> is gradually		increases the rate of
oxygen concentration	increased from 10°C to 80°C. How does the overall rate of the		reaction up to the point at

process change as the temperature increases?

- A. the rate of reaction would increase steadily with temperature
- B. the rate of reaction would remain constant
- C. the rate of reaction would initially increase with increasing temperature before reducing and eventually ceasing at high temperatures
- **D.** the rate of reaction would initially increase with increasing *reactions.* temperature before then plateauing at high temperatures

the general role of enzymes and coenzymes	Question 9	Α	NADPH acts as an electron
in facilitating steps in	Co-enzymes play an important role in biochemical processes.		donor in photosynthesis,
cellular respiration	Which of the following acts as an electron donor during	transferring high energy	
the general structure of the biochemical pathways in photosynthesis and cellular respiration from	photosynthesis?		electrons between
	A. NADPH		molecules.
	B. NADH		
initial reactant to final product	C. NADP ⁺		Once NADPH has donated
	D. NAD ⁺		its electrons, it becomes
			NADP⁺. NADH plays a
			similar role in cellular
			respiration.
the role of Rubisco in	Question 10	В	Photorespiration occurs
adaptations of C3, C4	Plants that thrive in hot, dry environments have evolved		when Rubisco binds to
and CAM plants to maximise the efficiency of	adaptations to reduce photorespiration. Photorespiration		oxygen instead of carbon
photosynthesis	occurs because	dioxide; if oxygen levels are	
	A. the affinity for Rubisco to bind to oxygen increases in		high and carbon dioxide
	higher temperatures and from plants opening their		levels are low, then Rubisco
	stomata.		is more likely to bind to
	B. the affinity for Rubisco to bind to oxygen increases in		oxygen. High oxygen levels
	higher temperatures and from plants closing their		can occur when plants
	stomata.		close their stomata to
	C. the affinity for Rubisco to bind to carbon dioxide increases		reduce water loss. Since
	in higher temperatures and from plants closing their		stomata are the means by
	stomata.		which oxygen exits the leaf,
	D. the affinity for Rubisco to bind to carbon dioxide increases		this can result in a build-up
	in higher temperatures and from plants opening their		of oxygen. Hence, at higher
	stomata.		temperatures, Rubisco's
			affinity for oxygen

increases.

Use the following information to answer Questions 11 - 13. Bacterial plasmids are used in genetic engineering to transfer foreign DNA into cells. One application of this technology is the production of human insulin, an important hormone that is responsible for regulating blood glucose levels.

Some people with diabetes are unable to produce insulin and, therefore, must artificially introduce it into their bodies. The insulin protein consists of two polypeptide chains, referred to as the alpha and beta subunits; hence, to produce insulin, two different recombinant plasmids and two different transformed bacteria samples are required, one producing each subunit.

amino acids as the monomers of a polypeptide chain and the resultant hierarchical levels of structure that give rise to a functional protein

Question 11

From the information above, what can be concluded about the insulin protein?

- A. it can only be produced artificially
- B. it has a secondary structure due to the two subunits
- C. it has a quaternary structure
- D. it is a fat-soluble hormone

C Insulin contains two polypeptide chains and proteins that consist of two or more polypeptide chains that have a quaternary structure. Like most proteins, insulin is watersoluble rather than fatsoluble.

D

the use of recombinant plasmids as vectors to transform bacterial cells as demonstrated by the production of human insulin

Question 12

Plasmid vectors that are selected for the production of insulin in bacteria need to contain two antibiotic-resistant genes: amp^{R} and tet^{R} . Which of the following correctly identifies the locations of the antibiotic-resistant genes with reference to the restriction sites of the endonucleases that are used in the recombination process?

- **A.** neither gene should contain a recognition site for the same restriction enzyme within their sequence
- **B.** both genes must contain a recognition site within their sequence
- C. one gene should contain a recognition site within its sequence for one type of restriction enzyme, while the other gene should contain a recognition site within its sequence for another restriction enzyme; both of these are mixed within the plasmids
- D. one gene should contain a recognition site within its sequence, while the other should not contain a recognition site

To determine which bacteria successfully take up plasmids, they are mixed with the antibiotic that corresponds to the antibiotic-resistant gene that does not contain a restriction site; only those that have taken up plasmids will be resistant. *To then determine which of* these bacteria have taken up plasmids that contain the foreign DNA, they are mixed with the antibiotic that corresponds to the antibiotic-resistant gene that does contain a restriction site. Only those that have <u>not</u> taken up a recombinant plasmid will be resistant to the second antibiotic.

the use of genetically	Question 13	С	A transgenic organism is a
organisms in agriculture to increase crop productivity and to provide resistance to disease	 Would the bacteria that successfully take up the recombinant plasmids and begin producing the insulin sub-units be described as transgenic organisms? A. no, because they have not been inserted into another organism B. yes, because their genome has been artificially altered C. yes, because they have incorporated DNA that originates from modified/manipulated recombinant DNA or a separate species D. no, because they do not contain DNA that would not 		genetically modified organism in which the genetic modification includes the incorporation of DNA that would not normally be found in that species. The genes that are producing the insulin sub- units are from an external organism/source.
	normally be found in these bacteria		
the general factors that impact on enzyme function in relation to photosynthesis and cellular respiration: changes in temperature, pH, concentration, competitive and non- competitive enzyme inhibitors	 ^t Question 14 Cyanide poisoning occurs because cyanide binds irreversibly to the enzyme cytochrome C oxidase in the mitochondria of cells at the site where its substrate normally binds, halting cellular respiration. Cyanide is, therefore, best described as A. a competitive inhibitor that binds to the active site of cytochrome C oxidase. B. a competitive inhibitor that binds to the substrate of cytochrome C oxidase. C. a non-competitive inhibitor that binds the allosteric site of cytochrome C oxidase. D. a non-competitive inhibitor that binds to the active site of cytochrome C oxidase. 		Competitive inhibitors bind to the active site of an enzyme, which is the site to which its substrate normally binds. A non-competitive inhibitor binds to another site on the enzyme, called the allosteric site. This causes the enzyme and its active site to change shape, preventing its normal substrate from binding to the active site.
	Use the following information to answer Questions 15 and 16. Plants may be C3, C4 or CAM plants depending on how they utilise photosynthesis and their environment. Cacti are an example of a CAM plant.		
the role of Rubisco in photosynthesis, including	Question 15	В	At night, CAM plants open

	the role of Rubisco in photosynthesis, including adaptations of C3, C4 and CAM plants to maximise the efficiency of	Que	estion 15	В	At night, CAM plants open
		Wh	at can be concluded about the photosynthesis pathway in		their stomata to take in
		cacti?			CO ₂ and fix it into a four-
photosynthesis	photosynthesis	Α.	the initial carbon fixation occurs in a different cell from		carbon molecule that is
			the remainder of the Calvin cycle, separating the		stored in the vacuoles of
			processes spatially		the cell. During the day, the
		В.	the initial carbon fixation occurs at night, while the		plants do not open their
			remainder of the Calvin cycle occurs during the day		stomata. The four-carbon
		C.	the initial carbon fixation occurs during the day, while the		molecule is transported out
			remainder of the Calvin cycle occurs at night		of the vacuole and broken
		D.	the light-dependent reactions are separated over time		down to release CO ₂ , which
					is then used to produce
					glucose.

inputs, outputs, and locations of the light	Que	estion 16	С	Although the light-
dependent and light independent stages of photosynthesis in C3 plants (details of biochemical pathway	Wh	ich of these processes would occur in both cacti and C3		independent stage differs
	plar	nts?		between C3, C4 and CAM
	Α.	glucose production during the light-independent stage		plants, the light-
mechanisms are not	В.	oxygen production in the stroma		independent stage is the
required)	C.	the energy of sunlight is transformed into chemical energy		same. In this stage, light
		in the grana		energy is transformed into
	D.	the Calvin cycle separated into two different cells		chemical energy, which is
				then used in the light-
				independent reactions. This
				process occurs in the
				thylakoid membranes of
				chloroplasts, which are
				arranged into stacks called
				grana.

Use the following information to answer questions 17 and 18. Figure 2 depicts parts of a process of DNA manipulation.

Figure 2.

amplification of DNA using polymerase chain	Question 17	D	The process shows
reaction and the use of	The process that is shown in <i>Figure 2</i> is		polymerase chain reaction
get electrophoresis in sorting DNA fragments, including the interpretation of ael runs	electrophoresis. CRISPR gene editing.		(PCR) testing, which can be concluded from the
for DNA profiling	C. the production of a recombinant plasmid.		addition of DNA
	D. polymerase chain reaction testing.		polymerase and the
			synthesis of
			complementary strands.
amplification of DNA usina polymerase chain	Question 18	В	Once the DNA has been
reaction and the use of gel electrophoresis in sorting DNA fragments, including the interpretation of gel runs	Which of the following would also need to be added during the		heated and separated, it is
	second step that is shown?		cooled slightly, and primers
	A. RNA polymerase and free nucleotides		and free nucleotides are
for DNA profiling	B. primers and free nucleotides		added. Primers adhere to

C. guide RNA and primers

D. endonucleases and free nucleotides

the single strands of DNA,

allowing DNA polymerase

to use the free nucleotides

complementary strand.

to produce a

the basic elements of gene regulation:	Que	estion 19	Α	Repression occurs when	
prokaryotic trp operon as	The	trp operon, found in species of bacteria such as E. coli,		levels of free tryptophan in	
a simplified example of a regulatory process	con	tains a series of genes that are involved in the production		the cell are high.	
	of t	he amino acid tryptophan. Regulation occurs through		Tryptophan binds to a	
	rep	ression and attenuation. During repression,		repressor protein, which	
	Α.	tryptophan binds to a repressor protein.		changes the shape of the	
	В.	tryptophan binds to the operator.		repressor, allowing it to	
	C.	a hairpin loop forms in the leader strand.		bind to the operator; this	
	D.	transcription occurs, but translation does not.		prevents RNA polymerase	
				from transcribing structural	
				genes.	
the role of rough endoplasmic reticulum.	Question 20			The correct sequence is	
Golgi apparatus and	The	production and secretion of proteins from a cell involves		B> A> C> D.	
associated vesicles in the export of proteins from a	sev	eral organelles. The following options describe some of the			
cell via the protein secretory pathway	ste	os in the protein secretory pathway. Which of these occurs			
	first?				
	Α.	amino acids are joined to form a peptide chain in a			
		condensation polymerisation reaction			
	В.	codons align with complementary anticodons at			
		ribosomes			
	C.	the peptide chain is folded into its tertiary structure			
	D.	the protein is packaged into a vesicle at the Golgi			

apparatus

Use the following information to answer Questions 21 and 22. An experiment is set up to test the effects of temperature on the activity of the enzyme diastase. Diastase catalyses the breakdown of starch into glucose.

Diastase is mixed with a starch solution and placed in a range of temperatures for 10 minutes. The final concentration of glucose is measured. *Figure 3* illustrates the trend in the results.

Figure 3.

proteins as a diverse group of molecules that collectively make an	Qu	estion 21	С	At high temperatures,
	What occurs after point X?			although the amino acid
organism's proteome, including enzymes as catalysts in biochemical pathways	Α.	the bonds that link the amino acids together in diastase are broken		chain remains intact, the tertiary structure of the
	В.	the final concentrations of starch reduce with increased temperature		enzyme breaks down; this changes the shape of the
	C.	the active sites of diastase change shape		active site so that the
	D.	the rate of reaction increases		enzyme can no longer catalyse its reaction.
identify independent, dependent and controlled	Qu	estion 22	D	The dependent variable is
variables in controlled	Wh	ich of the following would be a suitable dependent variable		the measured variable in an
experiments	for	this experiment?		experiment.

- A. the time for which the enzyme diastase acts on the starch solution
- **B.** the temperature at which the starch-enzyme mixtures were kept
- C. the amount of diastase that is added to each solution
- **D.** the final concentration of glucose
- ACED Unit 3 Biology Practice Exam Assessment Guide © ACED 2024. This exam is only licenced to the purchasing school. Page 9 of 19

Options A and C are

examples of controlled variables, while option B is

the independent variable.

Question 23

the factors that affect the rate of photosynthesis: light availability, water availability, temperature and carbon dioxide concentration

The following graphs illustrate how two different variables affect the rate of photosynthesis. Which option correctly identifies the independent variables that could be represented in these graphs?

- A. graph 1 could represent light availability, while graph 2 could represent temperature
- **B.** graph 1 could represent carbon dioxide concentration, while graph 2 could represent light availability
- **C.** graph 1 could represent temperature, while graph 2 could represent pH
- **D.** graph 1 could represent temperature, while graph 2 could represent carbon dioxide concentration

Increasing the temperature typically produces a shape similar to graph 1, as once a certain temperature is exceeded, the enzymes that catalyse the processes in photosynthesis denature. Graph 2 could represent carbon dioxide concentration or light availability, as increasing these variables will increase photosynthesis up to the point where another factor becomes limited.

D

uses and applications of angerobic fermentation	Qu	estion 24	В	Photosynthesis is the
of biomass for biofuel	Bio	fuels, such as ethanol, offer an alternative to conventional		process by which
production	fue	ls as a means to reduce greenhouse gas emissions. What		sugarcane and other plants
	pur	pose does photosynthesis serve in the production of		use to produce biofuels to
	bio	fuels?		produce sugar for energy.
	Α.	photosynthesis transforms oxygen into water in biofuels,		The sugarcane is then
		providing energy for an engine to run		harvested to produce
	В.	photosynthesis produces sugar, contributing to plant		ethanol.
		biomass which is then used to produce ethanol fuel		
	C.	photosynthesis produces energy in a combustion reaction		
	D.	photosynthesis does not play a role in the production and		
		use of biofuels		

potential uses and applications of CRISPR-	Que	estion 25	В	Reducing the affinity of
Cas9 technologies to	CRI	SPR-Cas9 technologies offer the potential to genetically		Rubisco would reduce
improve photosynthetic efficiencies and crop	eng	ineer crops to improve crop yields; for example, it could		photorespiration,
yields	imp	rove the efficiency of photosynthesis in a plant by		increasing the efficiency of
	Α.	introducing disease-resistant genes into the plant.		photosynthesis.
	В.	reducing the affinity of Rubisco to bind to oxygen.		
	C.	increasing the amount of carbon dioxide that is produced		
		during photosynthesis.		
	D.	increasing the concentration of NADH in chloroplasts.		

Section B

VCAA Key Knowledge

Answer Guide

Some VCE Biology students wished to test the effects of temperature on the growth of the grain barley in order to determine the optimum temperature at which it should be grown. Five different temperatures were tested: 10°C, 20°C, 30°C, 40°C and 50°C. For each temperature, three barley seeds (Sample 1-3) that were just germinating were prepared and planted. The seedlings all received the same amount of water each day and were all exposed to the same amount, and source, of light. After five days, the final height of each seedling was measured. The following table of results was produced:

Temperature (°C)	Height After Five Days (cm)			
	Sample 1	Sample 2	Sample 3	Average
10	2.3	2.8	2.1	2.4
20	1.5	6.1	5.5	5.8
30	7.9	8.6	9.0	8.5
40	4.1	4.3	4.1	4.2
50	1.3	0.9	0.7	0.97

identify independent, dependent and	Question 1a (3 marks)	Answer:
controlled variables in controlled experiments	Identify the	 The independent variable is the temperature at which they are grown.
	independent and dependent variables in this experiment and identify one controlled variable that is mentioned in the method.	 The dependent variable is the height of the seedlings after five days. One controlled variable is the starting condition of the seedlings (they are all about aerminate).
		 the amount of water that each seedling receives. the amount of light that each seedling receives. the source of light that each seedling receives.
		Marking Protocol: One mark for each of the above points.
		N.B. Only one controlled variable is required for a mark.

identify independent, dependent and controlled variables in controlled experiments the general structure of the biochemical pathways in photosynthesis and cellular respiration from initial reactant to final product	Question 1b (2 marks) Identify a variable that is not listed that would need to be controlled and explain why.	 Answer: The amount of carbon dioxide that each seedling receives must be controlled. This is because carbon dioxide is an input of photosynthesis which affects seedling growth. OR The pH of the soil in which the seedlings are kept must be controlled. This is because pH can affect enzyme function and, thus, affect seedling growth. OR The amount of fertiliser (if any) that each seedling receives must be controlled. This is as fertiliser provides nutrients for seedling growth. Marking Protocol: One mark for each of the above points. Any other reasonable response
		should be awarded marks.
the ofference of the state		
identify and analyse experimental data qualitatively, handing where appropriate concepts of: accuracy, precision, repeatability, reproducibility and validity of measurements; errors (random and systematic); and certainty in data, including effects of sample size in	Question 1c (2 marks) Describe validity and explain how your answer to Question 1b relates to the validity of the experiment.	 Answer: Validity refers to how well an experiment measures what it is intended to measure (for an experiment to be valid, only the independent variable should affect the dependent variable). In order for this to occur, all other variables (such as the amount of carbon dioxide as an input / the pH of the soil / the amount of fertiliser) need to be controlled for; otherwise, there may be additional variables that are affecting the growth of the seedlings (the dependent variable).
data		Marking Protocol:
		One mark for each of the above points.

identify outliers, and	Question 1d (1 mark)	Answer:
provisional data	One of the results was omitted as an outlier	• Sample 1 at 20°C.
		Marking Protocol:
	Identify which result was most likely to be	One mark for the above point.
	omitted.	
process quantitative	Ouestion 1e (2 marks)	Answer:

process quantitative data usina	Question 1e (2 marks)	Answer:
appropriate	Is the data collected	• The data is quantitative.
mathematical relationships and	qualitative or	• This is because it is numerical, which is indicative of quantitative data
units, including calculations of ratios,	quantitative? Explain	(whereas qualitative data is descriptive).
percentages,	your answer.	
and mean		Marking Protocol:
		One mark for each of the above points.

inputs, outputs and locations of the light	Question 1f (3 marks)	Answer:
dependent and light independent staaes of	The process by which	ullet The two stages are the light-dependent reactions and the light-
photosynthesis in C3	barely produces	independent reactions.
plants	glucose for energy and	 The inputs to the light-dependent stage (the first stage) are NADP, ADP,
	growth can be divided	Pi, and water, whereas the outputs are oxygen, ATP and NADPH.
	into two stages.	 The location of the light-dependent reactions is the thylakoid
		membranes (grana) of the chloroplasts.
	Name these two stages	
	and identify the inputs,	Marking Protocol:
	outputs and location of	One mark for each of the above points.
	the first stage.	
		NB: Light may also be listed as an input but is not required for full marks.
the role of Rubisco in	Question 1g (3 marks)	Answer:
including adaptations	Describe the role of	• Rubisco fixes carbon in the light-independent stage of photosynthesis by

Rubisco in the second stage of the process that was referred to in Question 1f and suggest two ways in which Rubisco may be involved in the trend that was seen in the results beyond 30°C.

plants to maximise the efficiency of

photosynthesis

- binding to carbon dioxide.
- Under high temperatures, Rubisco's affinity to bind to oxygen increases and its affinity for binding to carbon dioxide decreases, reducing the efficiency of photosynthesis; this could contribute to the plants' poor growth under 40°C and 50°C.
- Under high temperatures, plants are also more likely to close their stomata to prevent water loss – this causes oxygen build-up in the leaf, increasing the likelihood that Rubisco will bind to oxygen rather than carbon dioxide. This could reduce the efficiency of photosynthesis and contribute to the plants' poor growth under 40°C and 50°C.

Marking Protocol:

One mark for each of the above points.

the genetic code as a	Question 2b (2 marks)	Answer:
universal triplet code that is degenerate	Describe the role of	• During translation $tRN\Delta$ molecules bring amino acids to ribosomes
and the steps in gene	Molecule R in protein	• At the ribesomes, the codens of mRNA alian with the anticodens of
expression, including transcription, RNA	synthesis	• At the most of the amine acids then ioin together to form a pentide chain
processing in eukaryotic cells and	Synthesis.	triva una the amino acias then join together to joinn a peptiae chain.
translation by		Marking Protocol:
nbosomes		One mark for each of the above points
the structure of	\mathbf{O}_{1}	A
genes: exons, introns	Question 2c (2 marks)	Answer:
and promoter and operator regions	A particular section of a	 The original gene – and, therefore, the strand of pre-mRNA – contains
	protein consists of 20	introns and exons.
	amino acids; however,	 The introns get spliced out during post-transcriptional modification,
	the gene encoding this	leaving the final mRNA molecule shorter than the original.
	protein contains over	
	100 nucleotides.	Marking Protocol:
		One mark for each of the above points.
	Explain why this	
	discrepancy exists.	
the structure of genes: exons, introns	Question 2d (2 marks)	Answer:
and promoter and operator regions	Explain what is meant	 The proteome is the complete set of proteins that a cell or organism is
	by an organism's	capable of producing.
proteins as a diverse group of molecules	proteome and explain	 During post-transcriptional modification, alternative splicing can occur,
that collectively make an organism's	why an organism's	meaning that the exons can be reconnected in various sequences. This
proteome, including	proteome is larger than	means the proteome is larger than the genome, as several
enzymes as catalysts in biochemical	its genome.	combinations are possible.
pathways		
		Marking Protocol:
		One mark for each of the above points.
amino acids as the monomers of a	Question 2e (4 marks)	Answer:
polypeptide chain and the resultant hierarchical levels of structure that give rise to a functional protein	The particular protein	• The primary structure is the sequence of amino acids in a peptide chain.
	that is referred to in	 The secondary structure is the regular folding of an amino acid chain
	this question has	into an alpha helix or beta-pleated sheet due to hydrogen bonding.
	quaternary structure.	• The tertiary structure is the irregular, 3D folding of a protein into its
		unique shape.
	Briefly describe each of	• The quaternary structure is the final shape of a protein that consists of
	the hierarchies of	more than one peptide chain.
	protein structure.	
		Marking Protocol:
		One mark for each of the above points.

A sample of yeast was placed in three airtight containers and a glucose solution was added. The containers were sealed shut. One beaker was kept at 10°C, one at 40°C and the third at 80°C.

The initial percentages of oxygen and ethanol in the sealed containers were recorded. After one hour, the final percentages were recorded. The results of the experiment are shown in the following table.

Temperature (°C)	Initial Proportion of Oxygen (%)	Final Proportion of Oxygen (%)	Initial Proportion of Ethanol (%)	Final Proportion of Ethanol (%)
10	21	19	0	2
40	21	13	0	8
80	21	21	0	0

the location, inputs and the difference in outputs of anaerobic fermentation in animals and yeasts	Question 3a (2 marks) Name the process that occurs in yeast to produce ethanol and identify two other outputs from this process.	 Answer: The process is anaerobic respiration (fermentation). The other outputs are carbon dioxide and (two molecules of) ATP. Marking Protocol: One mark for each of the above points.
the main inputs, outputs and locations of glycolysis, Krebs Cycle and electron transport chain including ATP yield the location, inputs and the difference in outputs of anaerobic fermentation in animals and yeasts	Question 3b (3 marks) Name the process that consumed oxygen in this experiment. Describe two differences between this process and the process that was identified in Question 3a, that do not relate to oxygen consumption.	 Answer: The process is aerobic respiration. AND any TWO of the following differences: Aerobic respiration produces more molecules of ATP per molecule of glucose compared to anaerobic respiration. Aerobic respiration consists of glycolysis, the Krebs cycle and the electron transport chain, while anaerobic respiration only consists of glycolysis. Aerobic respiration requires the organelle mitochondria to be carried out, while anaerobic respiration only occurs in the cytosol.
		Marking Protocol: One mark for the first point. One mark for any correct difference, to a maximum of two. NB: Please accept any other correct differences. If students incorrectly answered 3a, teachers can decide whether or not to apply consequential marks to this question.

the factors that affect	Question 3c (3 marks)	Answer:
respiration:	Suggest reasons for the	ullet In the 10°C sample, ethanol production was lower because, at low
temperature, glucose availability and	differences in the final	temperatures, the enzymes and substrates that are involved in
oxygen concentration	proportions of ethanol	biochemical reactions move around less (because they have less kinetic
the general factors	between the three	energy) and, so, reactions occur at a slower rate due to fewer collisions
that impact on enzyme function in	temperatures.	between the active site of the enzyme and the substrate binding site.
relation to	I	• In the 40°C sample, ethanol production was the highest because this
photosynthesis and cellular respiration:		was the closest temperature to the optimal temperature of the enzymes
changes in temperature_nH		that were catalysing the reactions in angerohic respiration leading to
concentration,		the highest amount of collisions between the active site of the enzyme
competitive and non- competitive enzyme		and the substrate hinding site
inhibitors		In the 20°C cample, there was no othered produced because the
use reasoning to		• In the 80 C sumple, there was no ethanol produced because the
construct scientific arguments, and to		enzymes that were catalysing the reactions are likely to have denatured
draw and justify		due to high temperatures; hence, the changes in the shape of their
with the evidence and		active site meant that they were unable to bind with the substrate and
relevant to the question under		catalyse the reactions.
investigation		
		Marking Protocol:
		One mark for each of the above points.
uses and seelingthe		
uses and applications of anaerobic	Question 3d (2 marks)	Answer:
fermentation of biomass for biofuel	The process that was	 Biofuels can be produced through the fermentation of biomass such as
production	identified in Question	sugarcane, which produces ethanol – the ethanol can then be refined
	3a is used in the	into a biofuel and combusted to produce energy.
	production of biofuels.	 The overall process releases fewer net greenhouse gas emissions compared to conventional petrol because the process of growing
	Briefly describe this	hiomass such as sugarcane consumes carbon dioxide
	process and explain the	
	advantage of biofuels	Marking Protocol:
	over petrol in terms of	One mark for each of the above points
	greenhouse gas	
	emissions.	
the main inputs,	Question 3e (2 marks)	Answer:
of glycolysis, Krebs	The purpose of the	• The initial oxygen concentration in the containers should be minimised
Cycle and electron transport chain	experiment was to	as much as possible.
including ATP yield (details of	determine the	 This is because, if there is oxygen available, the yeast will undergo
biochemical pathway	optimum temperature	aerobic rather than anaerobic respiration and aerobic respiration does
mechanisms are not required)	at which to use yeast	not produce ethanol.
the location inputs	to produce ethanol.	
and the difference in	To maximica otheral	Marking Protocol:
outputs of anaerobic fermentation in	production what	One mark for each of the above points.
animals and yeasts	change chauld be	·
	made to the initial	
	made to the mitial	
	condition of the sealed	
	containers and why	
	should this change be	
	made?	

ACED Unit 3 Biology Practice Exam – Assessment Guide © ACED 2024. This exam is only licenced to the purchasing school. Page 16 of 19

DNA profiling can be used to assist in solving criminal cases by placing suspects at, or excluding them from, a crime scene. *Figure 5* shows the results of an electrophoresis run that compared the DNA of suspects at a crime scene.

amplification of DNA using polymerase	Question 4a (3 marks)	Answer:
chain reaction and	This particular DNA	• STRs are short sections of repeated sequences of DNA that are found in
the use of gel electrophoresis in	profile was produced	non-coding regions.
sorting DNA fragments, including	using the short-	• The repeated sequences are the same between people, but the number
the interpretation of	tandem-repeat (STR)	of repeated sequences differ.
gel runs for DNA profiling	CSF1PO.	• They are useful for DNA profiling because the sequences are found in all
		of the population but, due to differences in their lengths, they can be
	What are STRs and why	used to distinguish between individuals.
	are they used in DNA	
	profiling?	Marking Protocol:
		One mark for each of the above points.
amplification of DNA	Question 4b (2 marks)	Answer:
using polymerase chain reaction and	Describe how the STRs	• DNA is loaded into the wells in the electrophoresis ael at the negative
the use of gel electrophoresis in sorting DNA	are separated by gel	terminal end and a current is applied to the ael: because DNA is
	electrophoresis.	negatively charged, it moves towards the positive terminal.
fragments, including the interpretation of		Shorter fragments of DNA will travel further through the gel than longer
gel runs for DNA		fragments of DNA separating the STRs according to size
projiling		jragmento of Dive, separating the STAS according to size.
		Marking Protocol:
1		

One mark for each of the above points.

amplification of DNA using polymerase	Question 4c (2 marks)	Answer:
chain reaction and	Can any of the suspects	• Yes, Suspect 1.
electrophoresis in	be placed at the scene	• The crime scene contains a STR that matches the victim, but the only
sorting DNA fragments_including	according to these	individual that contains the other STR that was found at the crime scene
the interpretation of	results? Explain your	was Suspect 1.
gel runs for DNA profiling	answer.	
		Marking Protocol:
		One mark for each of the above points.
the use of enzymes to	Question 4d (2 marks)	Answer:
including polymerase	Before being separated	• DNA polymerase synthesises complementary strands of DNA.
to synthesise DNA, ligase to join DNA and	in an electrophoresis	 Primers anneal to the upstream region of the gene being amplified,
endonucleases to cut	run, the DNA of each	initiating the replication process.
2.0.1	sample was amplified	
	using PCR.	Marking Protocol:
		One mark for each of the above points.
	Outline the roles of	
	DNA polymerase and	
	primers in the process	
	of PCR.	

VCE Unit 3 BIOLOGY

Written Examination **ANSWER SHEET –** 2024

Student name:

Use a **PENCIL** for **ALL** entries. For each question, shade the box which indicates your answer.

Marks will **NOT** be deducted for incorrect answers.

NO MARK will be given if more than ONE answer is completed for any question.

If you make a mistake, **ERASE** the incorrect answer – **DO NOT** cross it out.

1	Α	В	С	D
2	А	В	С	D
3	Α	В	С	D
4	А	В	С	D
5	Α	В	С	D
6	Α	В	С	D
7	Α	В	С	D
8	Α	В	С	D
9	А	В	С	D
10	Α	В	С	D
11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	А	В	С	D

