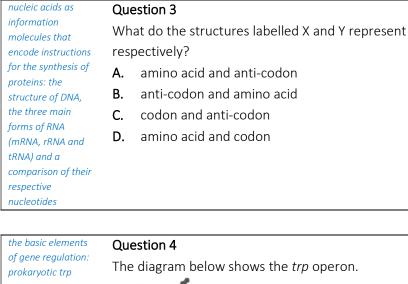
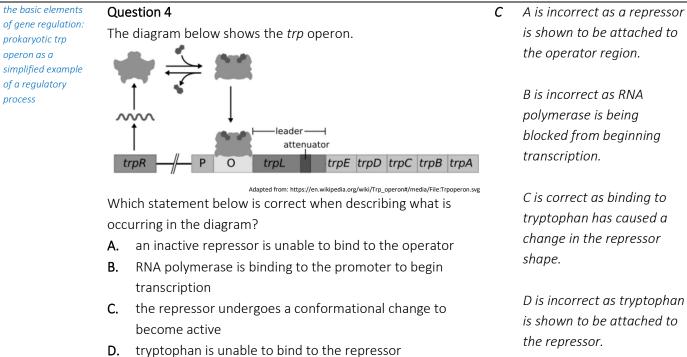


Units 3&4 Biology Practice Exam 2023 – Assessment Guide


Section A

VCAA Key	0	loction	٨٥	awar Cuida	
Knowledge	Question		AII	Answer Guide	
amino acids as the monomers of a polypeptide chain and the resultant hierarchical levels of structure that give rise to a functional protein	The Wh	estion 1 ere are 20 amino acids that are used to make proteins. hich part of the structure varies between each of these ino acids? the amino group the carboxyl group	С	The R group is the only variable region in an amino acid. The amine group, the carboxyl group and hydrogen atoms are the same in each amino acid.	
	C. D.	the R group hydrogen			


Use the following diagram to answer Questions 2 and 3.

nucleic acids as	Que	estion 2	В	The diagram shows tRNA
information molecules that encode instructions		e molecule shown in the diagram above does not contain ich of the following nitrogenous bases?		which does not contain thymine as it is only found
for the synthesis of	Α.	uracil		in DNA.
proteins: the structure of DNA,	В.	thymine		
the three main	C.	cytosine		
forms of RNA (mRNA, rRNA and tRNA) and a comparison of their respective	D.	adenine		
nucleotides				

A Transfer RNA has an amino acid and anti-codon attached to it. Y represents an anti-codon as it is composed of three RNA bases; so, X must be an amino acid.

Use the following information to answer Questions 5 and 6. Consider the diagram of the eukaryotic cell shown below.

Adapted From: https://stock.adobe.com/images/components-of-a-typical-animal-cell-unlabeled/168443766

the role of rough	Question 5	С	The rough endoplasmic
endoplasmic reticulum, Golgi apparatus and associated vesicles in the export of proteins from a cell via the protein secretory pathway	 The correct sequence of organelles that are involved in the protein secretory pathway is A. vesicle, Golgi body, endoplasmic reticulum and structure A. B. structure C, ribosome, vesicle and structure B. C. rough endoplasmic reticulum, vesicle, structure B and 		reticulum transports proteins via vesicles to the Golgi body (structure B), which then packages proteins into vesicles for export. The nucleus
	vesicle. D. nucleus, structure D, vesicle and cell membrane.		(structure A) and ribosomes (structure D) are not involved in secretion. C shows the correct sequence of organelles that are involved in secretion.
the general role of enzymes and coenzymes in facilitating steps in photosynthesis and	Question 6Which statement below best describes the role of structure C?A. site of photosynthesis	В	Structure C is the mitochondria and is the site of aerobic cellular

B. site of aerobic respiration

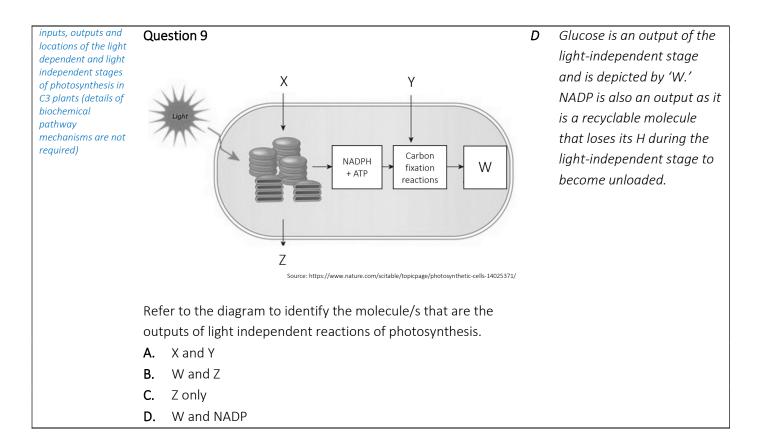
cellular respiration

the general structure

of the biochemical

cellular respiration

from initial reactant to final product

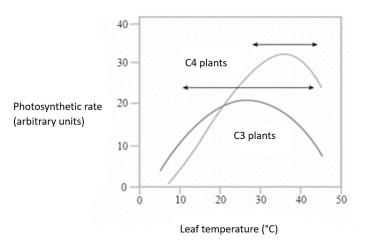

pathways in photosynthesis and

- C. site of anaerobic respiration
- D. the only site where ATP is produced in a cell

structure C is the mitochondria and is the site of aerobic cellular respiration. Anaerobic respiration occurs in the cytosol and ATP can also be produced in the cytosol via glycolysis.

the use of enzymes to manipulate DNA, including polymerase to synthesise DNA, ligase to join DNA and endonucleases to cut DNA	Question 7 EcoR1 Hae III Hae III MWR size (kbp) 24.0 16.0 12.0	С	Plasmids are circular; hence, the number of restriction sites is the same as the number of fragments that are produced. In the lane where the plasmid is cut with both
	Source: https://www.toppr.com/ask/question/a-gel-electrophoresis-was-run-to-show-the-fragments-produced-by-restriction-digested different/	s-with-	EcoR1 and Hae III, there are three fragments and, so, there must be three restriction sites.
	 When a bacterial plasmid is cut by both EcoR1 and Hae III enzymes, how many restriction sites are needed to produce the fragments that are shown in the above gel electrophoresis? A. one B. two C. three D. four 		

amplification of DNA using polymerase	Que	estion 8	Α	DNA is double-stranded
chain reaction and	Wh	ch of the following is the best explanation for why two		and anti-parallel, which
the use of gel electrophoresis in	gen	etically different primers are used during PCR?		means that two genetically
sorting DNA	Α.	because DNA is an anti-parallel double-stranded molecule		different primers are
fragments, including the interpretation of	В.	because two new copies of DNA will be produced per		needed to anneal to the
gel runs for DNA profiling		single strand		two 3' ends of the two
projiling	C.	so that <i>Taq</i> polymerase can anneal to the primers		strands.
	D.	so that genetically varied DNA copies can be made		


the role of Rubisco in photosynthesis, including adaptations of C3, C4 and CAM plants to maximise the	Question 10Which of the following is NOT a strategy that is used by CAM plants to avoid photorespiration?A. closing stomata during the day	С	CAM plants close their stomata during the day and open them at night to absorb CO ₂ .
efficiency of photosynthesis	 B. absorbing CO₂ at night C. completing most of the Calvin cycle in bundle sheath cells D. starting the Calvin cycle in mesophyll cells 		CAM plants carry out the Calvin cycle in the mesophyll cells; C4 plants use bundle sheath cells to complete the Calvin cycle.
the factors that affect the rate of	Question 11	В	Glucose is an input of

affect the rate of	Qu	estion 11	в	Glucose is an input of
cellular respiration:	When the amount of glucose increases in a yeast cell, it would			cellular respiration,
temperature, glucose availability	be	expected that the amount of CO_2 that is produced		whereas CO ₂ is an output;
and oxygen	Α.	decreases.		therefore, as more glucose
concentration	В.	increases.		becomes available, more
	C.	stays the same.		CO ₂ will be produced.
	D.	decreases first then rapidly increases.		

potential uses and	Que	estion 12	Α	CRISPR-Cas9 is a cost-
applications of CRISPR-Cas9	CRI	SPR-Cas9 can be applied to change gene expression in the		effective and easy process
technologies to	thy	lakoid membranes of chloroplasts. What is the benefit of		for gene editing.
improve	usir	ng CRISPR-Cas9 to edit the genes of photosynthesising plant		
photosynthetic efficiencies and crop	cell	s?		CRISPR-Cas9 is used to
yields	Α.	it is easy and cost-effective		increase the rate of
the role of Rubisco in	В.	it edits Rubisco to have an affinity to bind with O_2		photosynthesis to increase
photosynthesis,	C.	it increases the photorespiration rate		crop yield; this would
including	D.	all of the above		require Rubisco to bind
adaptations of C3, C4 and CAM plants				with CO_2 rather than O_2 .
to maximise the				
efficiency of				
photosynthesis				

Use the following information to answer Questions 13 – 15.

The graph below shows the results of an experiment that investigated the relationship between temperature and the photosynthetic rate of C3 and C4 plants.

	Source: https://www.aakash.ac.in/important-concepts/biology/photosynthesis						
the general factors	Qu	estion 13	D	The graph shows that C4			
that impact on enzyme function in relation to		ich of the following statements is true regarding the graph ove?		plants have a higher optimal temperature than			
photosynthesis and cellular respiration: changes in	А. В.	the enzymes in C3 and C4 plants denature at 10°C at 20°C, the photosynthetic rate for C3 plants is lower		C3 plants.			
changes in temperature, pH, concentration, competitive and non-competitive enzyme inhibitors	C. D.	than C4 plants at 40°C, the photosynthetic rate for C3 plants is 25 arbitrary units C4 plants have a higher optimal temperature than C3 plants		At 20°C, the activity for both plants is the same. At 10°C, the activity is slower, but the enzymes have not denatured. At 40°C, the			
				activity of C4 plants is approximately 25 arbitrary units, not C3 plants.			

the general factors that impact on enzyme function in relation to photosynthesis and cellular respiration: changes in temperature, pH, concentration, competitive and non-competitive enzyme inhibitors	 A. the enzyme activity was reduced due to the action of competitive inhibitors B. the low pH had begun to denature the enzymes C. the kinetic energy is reduced compared to other temperatures D. the activation energy is too low 		Increased heat increases kinetic energy, which accelerates reactions. The temperature does not affect the activation energy nor inhibition.
characteristics of the selected scientific methodology and method, and	Question 15 A controlled variable that would be included when collecting the data for this experiment would be	D	The temperature is the IV and, so, changes. The photosynthetic rate is the

DV. Repeating the

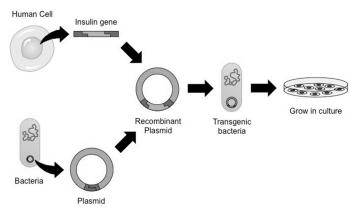
could impact the

controlled.

experiment is to increase

The concentration of CO₂

photosynthetic rate and, therefore, would need to be


the reliability of results.

appropriateness of the use of independent,
dependent and controlled variables
the data for this experitile data for this experi-A. leaf temperature.
B. the photosynthetic
C. repeating the experitile data for this experitile data for this experitile data for this experitile data for this experiinterdata for this experitile data for this experitile data for this experitile data for this experiant experitile data for this experiant experitile data for this experitile data for this experiinterdata for this experitile data for this experitile data for this experitile data for this experitile data for this expertile data for this experfor the for the for this expertile data for this expertile data for this expertile data for this experfor the for the

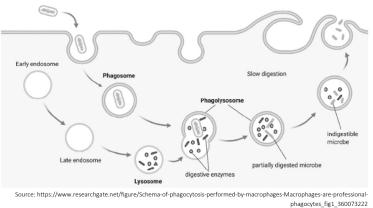
in the selected

scientific investigation B. the photosynthetic rate.
C. repeating the experiment in the absence of light.
D. the CO₂ concentration.

Use the following information to answer Questions 16 and 17. The following diagram shows how recombinant technology is used to produce human insulin.

Source: https://ib.bioninja.com.au/standard-level/topic-3-genetics/35-genetic-modification-and/gene-transfer.html

the use of	Que	estion 16	С	In this process, the vector
recombinant plasmids as vectors	Wh	ich of the following is the vector in the process that is		carries the DNA from one
to transform	dep	depicted in the image?		cell to another; in this case,
bacterial cells as	Α.	insulin gene		it is the recombinant
demonstrated by the production of	В.	bacteria		plasmid.
human insulin	C.	recombinant plasmid		
	D.	human cell		


the use of	Que	estion 17	Α	The term 'transgenic'
genetically modified and transgenic		y are the bacteria referred to as 'transgenic' after the		describes the addition of
organisms in	inse	ertion of the recombinant plasmid?		DNA from a foreign species.
agriculture to increase crop	Α.	it has non-bacterial DNA		
productivity and to	В.	it is antibiotic resistant		
provide resistance to	C.	it is a GMO		
disease.	D.	the genes have been silenced		

the accuracy,	Que	estion 18	С	As the glucose
precision, reproducibility,	AY	ear 12 biology class carried out an experiment testing the		concentration is the IV,
repeatability and	effe	ect of glucose concentration on the rate of ethanol		keeping all other variables
validity of	pro	duction by yeast cells. They ensured that all variables		consistent contributes to
measurements	bes	ides glucose concentration were controlled. This was done		validity.
	to e	ensure that the results were more		
	Α.	precise.		
	В.	reproducible.		
	C.	valid.		
	D.	repeatable.		

uses and	Qu	Question 19DEthanol is an output of the				
applications of anaerobic	Pyr	uvate is used by yeast cells to make ethanol, which is then		anaerobic fermentation		
fermentation of	cor	nverted to biofuel. The process in yeast cells that produces		process in yeast cells; this		
biomass for biofuel	ethanol			occurs in the absence of		
production	Α.	is aerobic fermentation.		oxygen.		
	В.	is carried out in mitochondria.				
	C.	requires more energy than it releases.				
	D.	is carried out in the absence of oxygen.				
<u> </u>						
-						

physical, chemical	Qu	estion 20	В	Thick waxy cuticles and the
and microbiota barriers as	A c	hemical barrier of plants against pathogens is/are		formation of galls are
preventative	Α.	thick waxy cuticles.		physical barriers whilst
mechanisms of pathogenic infection	В.	oxalic acid.		interferon is found in
in animals and	C.	the formation of galls.		animals, not in plants.
plants	D.	interferon.		
				Oxalic acid is a chemical
				barrier.

Use the following information to answer Questions 21 and 22. This diagram shows the action of macrophages in response to invading pathogenic bacteria.

Question 21

the innate immune

response including

characteristics and

the steps in an

inflammatory response and the

roles of macrophages,

neutrophils,

dendritic cells, eosinophils, natural killer cells, mast cells, complement proteins and interferons

passive strategies

for acquiring

immunity

The action of macrophages as shown in the diagram is an example of a

- A. first-line of defence and specific immunity.
- B. second-line of defence and adaptive immunity.
- C. first-line of defence and passive immunity.
- D. second-line of defence and innate immunity.
- D Macrophages are involved in phagocytosis and this is an example of the second line of defence and innate immunity.

it is a result of medical

intervention.

the role of the	Question 22	Α	Macrophages are antigen-
lymphatic system in the immune response as a transport network and the role of lymph nodes as sites for antigen recognition by T and B lymphocytes	 Once macrophages digest the pathogenic bacteria, they travel to the lymph nodes. Which is the most correct description of what occurs here? A. macrophages display antigens on their MHC II markers B. macrophages attract Tc cells C. macrophages secrete antibodies D. macrophages respond to cytokines, causing apoptosis of the affected cells 		presenting cells and display antigens on MHC II markers. They do not attract Tc cells in lymph nodes, while plasma B cells secrete antibodies. Macrophages are not involved in the apoptosis of infected cells.
the difference between natural and artificial immunity and active and	Question 23 A child was bitten by a venomous snake; she was taken to the hospital immediately, where anti-venom was administered.	С	Anti-venom is the passive administration of antibodies; it is artificial as

The type of immunity that is provided by the anti-venom is

A. artificial and active.B. natural and active.

- **C.** artificial and passive.
- D. natural and passive.

ACED Units 3&4 Biology Practice Exam – Assessment Guide © ACED 2023. This exam is only licenced to the purchasing school. Page 9 of 33

the characteristics and roles of the components of the adaptive immune	Question 24 Which of the following statements is an accurate description of something that may occur during the humoral response?	С f	The humoral response does not include cytotoxic T cells, NK cells or mast cells;
response against both extracellular and intracellular threats, including the actions of B lymphocytes and their antibodies,	 A. cytotoxic T cells release perforin B. NK cells destroy infected cells C. antibodies bind to pathogens and activate complement proteins D. mast cells release histamine 		humoral immunity involves antibodies.
helper T and cytotoxic T cells			

the development of	Question 25	Α	Since adalimumab is
immunotherapy strategies, including	Adalimumab is a monoclonal antibody that is used in the		involved in the treatment of
the use of	treatment of rheumatoid arthritis, which is an autoimmune		an autoimmune disease, it
monoclonal	disease.		would need to suppress the
antibodies for the treatment of	Source: https://arthritisaustralia.com.au/medication-search/adalimum	ab/	action of the immune
autoimmune diseases and cancer	Adalimumab is likely to be an effective treatment for an autoimmune disease because		system. Blocking cytokines is a form of immune
	A. of its ability to block the release of cytokines.		repression.
	B. it activates the immune system.		
	C. it triggers apoptosis.		
	D. it allows NK cells to kill infected cells.		

Use the following information to answer Questions 26 and 27. Ross River virus is spread by infected mosquitoes when they bite through the skin. People are at increased risk of infection if they spend a lot of time near bodies of water, such as wetlands or rivers. It is not spread from person to person and a vaccine is not currently available in Australia.

scientific and social	Que	estion 26	D	Mosquitoes act as vectors
strategies employed to identify and	Ros	s River virus		of the virus by carrying the
control the spread of	Α.	is spread through physical contact.		virus from one host to
pathogens, including identification of the	В.	can be prevented with the use of hand sanitizer.		another.
pathogen and host,	C.	can only be controlled by killing mosquitoes.		
modes of transmission and measures to control	D.	involves vectors.		
transmission				

vaccination	Question 27	В	In Australia, Ross River is
programs and their role in maintaining	Australia does not have herd immunity to the Ross River virus		not a widely encountered
herd immunity for a	because		disease and we do not have
specific disease in a	A. you cannot have vaccines for viruses.		a vaccine available.
human population	B. there is no available vaccine.		
	C. a majority of the population has already been infected.		You can have vaccines for
	D. it is spread by mosquitoes.		viruses. To achieve herd
			immunity, a large number
			of the population needs to
			have either been infected
			previously with the Ross
			River virus or have been
			immunised. Additionally,
			viral spread by mosquito
			vectors does not preclude a
			population from developing
			herd immunity.

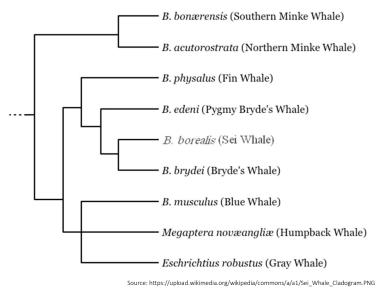
causes of changing allele frequencies in a population's gene pool, including environmental selection pressures, genetic drift and gene flow; and mutations as the source of new alleles

Question 28

Refer to the following codon table to answer the question.

			Secon	d Base			
		U	С	A	G		
			ר טכט	UAU	UGU	U	Γ
	υ	UUC Phe	UCC	UACTyr	UGC - Cys	С	
	0	UUA –	UCA - Ser	UAA T cross	UGA - STOP	A	1
		UUG Leu	UCG -	UAG - STOP	UGG — Trp	G	
		CUU	ר עסס	CAU 7- His	CGU T	U	
	с	CUC	CCC	CAC J IIIS	CGC	С	
	~	CUA - Leu	CCA Pro	CAA 7- Gin	CGA - Arg	Α	
First Base		CUG -	CCG -		CGG _	G	
First		AUU	ACU 7	AAU 7- Asn	AGU 7- Ser	U	Con Chille
	A	AUC - Ile	ACC – Thr	AAC _ ASI	AGC -	С	
	$^{\circ}$	AUA	ACA	AAA - Lys	AGA - Arg	Α	
		AUG - Met or Start	ACG -	AAG J LYS	AGG	G	
		GUU	GCU	GAU 7- Asp	GGU T	U	
	G	GUC	GCC	GAC _ ROP	GGC	С	
		GUA - Val	GCA Ala	GAA - Glu	GGA Gly	Α	
		GUG	GCG -	GAG J GIU	GGG -	G	

A ACT results in a nonsense mutation because it codes for a STOP codon.


Source: https://commons.wikimedia.org/wiki/File:Genetic_Code.png

Which of the following sequences would result in a nonsense mutation?

- A. ACT
- B. UAA
- C. UAG
- D. ACU

biological	Question 29	С	Random mating, gene flow
consequences of changing allele	A population will likely have low genetic diversity if		and a high mutation rate
frequencies in terms of increased and decreased genetic diversity	 A. random mating occurs. B. there is gene flow. C. there are high levels of inbreeding. D. there is a very high mutation rate. 		would all increase genetic diversity, whereas inbreeding involves the passing down of the same alleles, decreasing genetic diversity.
manipulation of	Question 30	В	Selective breeding involves
gene pools through selective breeding	Which of the following is the most likely reason for selectively		people choosing desired
programs	breeding sheep in Australia?		traits to be passed on to
	A. to increase genetic diversity		future generations;
	B. to increase wool quality		increased wool quality
	C. to allow for more gene flow		could be such a trait.
	D. to allow natural selection to occur		

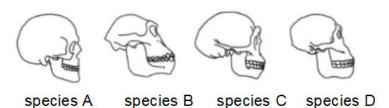
Use the following information to answer Questions 31 - 33. The diagram below shows the evolutionary relationship between different species of whale.

the use and	Question 31	В	The southern minke whale
interpretation of phylogenetic trees	Which of the following statements is correct?		and the northern minke
as evidence for the	A. the blue whale is more closely related to the sei whale		whale share the most
relatedness between species	than the Bryde's whale		recent common ancestor
species	B. the southern minke whale and the northern minke whale		with each other and, so,
	would have more DNA in common with each other than		would be expected to have
	with the other whales		more DNA in common with
	C. the pygmy Bryde's Whale shares a more recent common		each other than when
	ancestor with the fin whale than the sei whale		compared with other whale
	D. the humpback whale is the least closely related to the fin		species.
	whale		

the use and	Question 32	D	The diagram shows a
interpretation of phylogenetic trees as evidence for the relatedness between species	 The diagram above is referred to as a A. pedigree. B. evolutionary time scale. C. family tree. D. phylogenetic tree. 		phylogenetic tree as it shows the evolutionary relationships between different species.
evidence of relatedness between species: structural	Question 33 Which statement is correct about the structural characteristics of the whales?	A	The pelvic bone is a likely a vestigial organ as whales no longer have a use for
morphology – homologous and vestigial structures; and molecular	 A. the pelvic bone in whales is likely to be an example of a vestigial organ that demonstrates the ancestors of whales 		this bone; it shows, however, that their

vestigial organ that demonstrates the ancestors of whales and molecular homology – DNA walked on land ancestors walked on land. and amino acid B. whales do not share any homologous structures sequences Since the whales share a C. structures that increase the chance of survival would be recent common ancestor, selected against they would have D. structures that allow swimming are not inherited homologous structures in common. Structures that *increase the chance of their* survival would be selected for, not against, and

> structures that allow swimming are inherited


adaptations.

changes in species	Qu	estion 34	В	High pressure, rather than
over geological time as evidenced from	Wh	ich of the following is not necessary for fossilisation to		low pressure, is a condition
the fossil record:	occ	sur?		of fossilisation.
faunal (fossil) succession, index	A. a low oxygen environment			
and transitional	В.	low pressure		Low oxygen, a lack of
fossils, relative and	C.	a lack of decomposers		decomposers and
absolute dating of fossils	D.	protection from scavengers		protection from scavengers
1033113				are all conditions of
				fossilisation.

evidence of	Question 35			DNA sequencing is more
relatedness between species: structural	Wh	ich of the following gives the most accurate information		accurate than amino acid
morphology –	whe	en analysing the relatedness between species?		sequencing as the DNA
homologous and	Α.	comparative anatomy		code can be used to deduce
vestigial structures; and molecular	В.	vestigial structures		the amino acid sequence
homology – DNA	C.	amino acids sequencing		but not vice versa.
and amino acid sequences	D.	DNA sequencing		Structural homology is less
sequences				accurate as it includes
				analogous structures which
				are not evidence of
				evolutionary relatedness.

the shared characteristics that define mammals, primates, hominoids	Question 36PrimatesA. have a small cranium-to-body ratio.	В	Primates have sensitive touch receptors in their fingers and toes.
and hominins	 B. have a sinul cranium to body ratio. B. have sensitive touch receptors in their fingers. C. carry out bi-pedal locomotion. D. lack a tail. 		Conversely, primates: have a large cranium-to-body ratio when compared with other mammals; do not universally perform bi- pedal locomotion; and can have a tail.

Use the following information to answer Questions 37 and 38. The diagram below shows a selection of skulls of various extinct and living human species.

Source: https://commons.wikimedia.org/wiki/File:Skull_evolution.png#/media/File:Skull_evolution.png

evidence for major	Que	estion 37	Α	Species A is the Homo
trends in hominin evolution from the	Wh	ich of the skulls above has the most central foramen		sapiens skull so it would
genus	ma	magnum?		have the most central
Australopithecus to the genus Homo:	Α.	species A		foramen magnum.
changes in brain size	В.	species B		
and limb structure	C.	species C		
	D.	species D		

evidence for major	Que	estion 38	Α	A feature, such as the size
trends in hominin evolution from the	Fro	m oldest to most recent, which is the correct order of the		of the cranium, could be
genus	fou	r species that are shown in the diagram?		used to determine the
Australopithecus to	Α.	B, D, C, A		oldest to most recent
the genus Homo: changes in brain size	В.	A, B, C, D		species. Species A is Homo
and limb structure	C.	B, D, A, C		sapiens; species B is
	D.	A, C, D, B		Australopithecus africanus
				(3.3 – 2 million years old);
				species C is Homo erectus
				(2 million – 100,000 years
				old) and species D is Homo
				habilis (2.4 – 1.5 million
				years old).

ways of using fossil and DNA evidence (mtDNA and whole genomes) to explain the migration of modern human populations around the world, including the migration of Aboriginal and Torres Strait Islander populations and their connection to Country and Place **Please note:** the following question refers to research collecting the DNA of Indigenous Australians who have died.

Question 39

Studies of Indigenous Australian mtDNA have found a high amount of genetic diversity and estimate the age of the genetic haplogroups, a combination of alleles that are closely linked and that tend to be inherited together, to be over 40,000 years old.

This supports the suggestion that

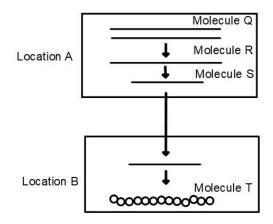
- **A.** Indigenous Australians migrated to Australia from Sahul.
- **B.** Indigenous Australians interbred with Denisovans in Asia.
- **C.** there was a low mutation rate in the DNA of Indigenous Australians.
- **D.** Indigenous Australians have one of the oldest continuous cultures in the world.

Genetic haplogroups over the age of 40,000 years old and high rates of genetic diversity suggest that more mutations would accumulate over a longer period of time.

D

A long period of time alone does not give evidence of interbreeding or migration patterns. A low mutation rate would not lead to high genetic diversity.

the health, safety and ethical guidelines relevant to the selected scientific investigation	Wh test 1) h 2) r 3) r	estion 40 en conducting a scie subjects, scientists nonestly report findir eceive consent from educe the possibility tch the requirement	d participants.	A	Integrity involves being trustworthy and honestly reporting findings. Receiving consent from participants is respecting the wishes of individuals, which is part of respect. Non-maleficence involves reducing harm.	
		Requirement 1	Requirement 2	Requirement 3]	
	Α.	integrity	respect	non-maleficence	1	
	В.	beneficence	respect	non-maleficence		
	C.	justice	justice	beneficence	1	
	D.	integrity	justice	beneficence		

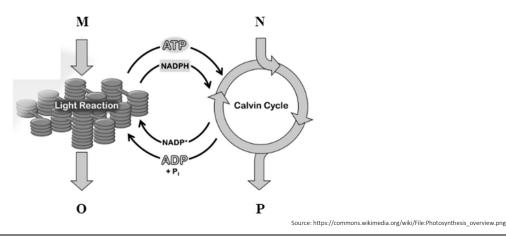

Section B

VCAA Key Knowledge

Question

Answer Guide

The following diagram shows the steps involved in the processes of gene expression.


nucleic acids as information	Question 1a (3 marks)	Answer:
molecules that	Identify Molecule Q and	 Molecule Q is DNA and Molecule S is RNA/mRNA.
encode	Molecule S. State two	
instructions for	differences between	Differences between DNA and RNA include:
the synthesis of proteins: the	these two molecules.	 DNA is double-stranded whereas RNA is single-stranded.
structure of DNA, the three main forms of RNA		• DNA contains the sugar deoxyribose, whereas RNA contains the sugar ribose.
(mRNA, rRNA and tRNA) and a		• DNA contains the base thymine, whereas RNA contains the base uracil.
comparison of their respective		Marking Protocol:
nucleotides		One mark for the first point.
		One mark for any difference, to a maximum of two. Any other correct
		differences between DNA and RNA should be awarded a mark.
the genetic code		
as a universal	Question 1b (1 mark)	Answer:
triplet code that	Justify why the length of	 Introns are cut out of pre-mRNA/molecule R, and therefore only exons
is degenerate and	Molecule S is shorter	are included in the final mRNA sequence/molecule S, leading to this
the steps in gene expression,	than that of Molecule R.	molecule being shorter.
including		
transcription,		Marking Protocol:
RNA processing in eukaryotic cells and translation		One mark for the above point.
by ribosomes		

the genetic code as a universal triplet code that is degenerate and the steps in gene expression, including transcription, RNA processing in eukaryotic cells and translation by ribosomes	Question 1c (4 marks) Outline the steps of the process that occurs in Location B that leads to the formation of Molecule T. In your answer, identify the organelle that Location B represents and state the biological molecule that Molecule	 Answer: Location B is the ribosome and Molecule T is a protein/polypeptide. The mRNA is read by the ribosome, three nucleotides/one codon at a time, and tRNA molecules bring specific amino acids to the ribosome. When the anti-codon of a tRNA molecule is complementary to the codon on the mRNA and they combine, the amino acid that is carried on that specific tRNA is released. The amino acid joins to the growing polypeptide chain (linked by peptide bonds) until a STOP codon is reached by the ribosome.
	molecule that Molecule T represents.	Marking Protocol: One mark for each of the above points.

CRISPR-Cas9 is a gene-editing technique that can be used to alter the genome of plants to improve crops for human benefit. The CRISPR-Cas9 system is one way of editing a plant's genome to increase the rates of photosynthesis.

the function of CRISPR-Cas9 in bacteria and the application of this function in editing	Question 2a (2 marks) What type of enzyme is Cas9 and what is the role of Cas9 in the CRISPR-	 Answer: Cas9 is an endonuclease/restriction enzyme. Its role is to cut a specific section of double-stranded DNA.
an organism's genome	Cas9 complex?	Marking Protocol:
		One mark for each of the above points.
potential uses and applications of CRISPR-Cas9 technologies to improve photosynthetic efficiencies and crop yields	Question 2b (2 marks) Explain how CRISPR-Cas9 technology could edit genes to change the rate of photosynthesis in plants.	 Answer: CRISPR-Cas9 can be used to edit the gene that codes for the enzyme Rubisco. The Rubisco protein can be edited to bind more to CO₂ (or less to O₂), which could increase the rate of photosynthesis. OR Genes could be edited to increase the amount of chlorophyll. More chlorophyll would increase the amount of sunlight captured and hence more water split to provide more H for glucose production.
		Marking Protocol:
		One mark for any of the above points, to a maximum of two.

The diagram below represents the process of photosynthesis.

inputs, outputs and locations of the light dependent and light independent stages of photosynthesis in C3 plants

C3 plants

Question 3a (3 marks) Name the input molecules M and N and describe how they react to produce the output molecules O and P. Answer:

- Molecule M is water and molecule N is carbon dioxide.
- Water (M) is split by sunlight energy to produce molecule O (oxygen).
 Carbon dioxide (N) reacts with hydrogen to produce molecule P
- (glucose) or carbon dioxide (N) is fixed into molecule P (glucose).

Marking Protocol:

One mark for each of the above points.

inputs, outputs
and locations of
the lightQuestion 3b (1 mark)
Identify the structuredependent and
light independent
stages of
photosynthesis inWhere the light-
dependent reaction of
photosynthesis occurs.

Answer:

• The thylakoid membranes/grana.

Marking Protocol:

One mark for the above point.

the role of Question 3c (3 marks) Rubisco in Sugarcane plants are photosynthesis, adapted to hot, sunny including adaptations of conditions and are an C3, C4 and CAM example of C4 plants. plants to These adaptations maximise the efficiency of change how the Calvin photosynthesis cycle of photosynthesis is carried out. Most plants are examples of C3 plants and carry out the Calvin cycle differently to C4 plants. Explain the differences in the adaptations that affect the process of photosynthesis between sugarcane plants and C3

plants.

Answer:

- Sugarcane plants split the location of the Calvin cycle into two locations, whereas, in C3 plants, there is no separation.
- In sugarcane, the Calvin cycle begins in mesophyll cells and then finishes in bundle sheath cells, whereas, in C3 plants, the Calvin cycle only occurs in the mesophyll cells.
- Sugarcane plants have this adaptation to reduce the amount of photorespiration and to increase the amount of photosynthesis that occurs, which is not a concern for C3 plants.

Marking Protocol:

One mark for each of the above points. Any correct alternative differences between sugarcane and C3 plants should also be awarded marks.

Duckweed is a fast-growing aquatic plant that is being studied as an option to use in the production of biodiesel; currently, soybeans are the most commonly used plant to produce biodiesel.

In a new study in the *Plant Biotechnology Journal*, researchers found that genetically modifying duckweed plants could lead to the production of seven times more oil when compared with using soybeans. CRISPR-Cas9 technology was one of the techniques that was used to edit the duckweed genome. Bacterial transformation was also utilised to insert foreign genes into the duckweed plant genome to test its potential for biofuel production.

Source: https://onlinelibrary.wiley.com/doi/full/10.1111/pbi.13943

uses and applications of anaerobic fermentation of biomass for biofuel production	Question 4a (1 mark) Identify the input molecule that produces bioethanol.	Answer: • Plant sugars. Marking Protocol: One mark for the above point.
the use of genetically modified and transgenic organisms in agriculture to increase crop productivity and to provide resistance to disease	Question 4b (2 marks) Would genetically modified duckweed plants be considered transgenic? Justify your response.	 Answer: The genetically modified duckweed plants would be considered transgenic because they have genes from another species inserted into their genome using bacterial transformation. Marking Protocol: One mark for each of the above points.
the use of	Question 4c (2 marks)	Answer:
recombinant plasmids as vectors to transform bacterial cells as demonstrated by	Agrobacterium bacterial cells were used in the bacterial transformation process.	 Plasmids allow for agrobacterial cells to be used in transformation. They act as a vector to transfer DNA/genes from outside the duckweed cells into the duckweed cells.
the production of human insulin	State the structure in the agrobacterial cells that allows it to be used in the bacterial transformation process and describe its role.	Marking Protocol: One mark for each of the above points.

the use of	Question 4d (3 marks)	Answer:		
enzymes to manipulate DNA, including polymerase to	Enzymes play an	Enzyme	Role	
	important role in the	1. Restriction	The role of the restriction enzyme is to	
synthesise DNA,	bacterial transformation	Enzyme/Endonuclease	cut the double-stranded DNA of the	
ligase to join DNA and	process.		target gene and/or plasmid at a specific	
endonucleases to	In the table, identify two		site.	
cut DNA	enzymes that are	2. DNA Ligase	The role of DNA ligase is to create	
	involved in bacterial		phosphodiester bonds and join together	
	transformation and state		the target gene and plasmid fragments	
	their respective roles.		of DNA.	
	EnzymeRole1.2.	enzymes.	entifying both of the names of the two prrect roles of each enzyme.	
potential uses	Question 4e (1 mark)	Answer:		
and applications of CRISPR-Cas9	Using CRISPR-Cas9	• To increase crop yield.		
technologies to	technology to edit the	• To increase the nutritional value of crops.		
improve photosynthetic	duckweed plant genome	ullet To improve the appearance of fruit or vegetables to appeal to		
efficiencies and	to produce large	consumers.		
crop yields	amounts of biodiesel was a breakthrough in	 To change the ripening period. 		
	plant biology research.	• To increase the shelf lif		
	Plant Slology (cocaroll.	 To improve drought or pest resistance. 		

Marking Protocol:

List another possible

Cas9 technology on

plants.

application of CRISPR-

One mark for any one of the above points or any other reasonable answer.

Source: https://www.abc.net.au/news/health/2019-04-10/measles-spikes-prompts-immunisation-warning-are-you-at-risk/10986172

Measles is a highly contagious viral disease that is spread primarily through coughing and sneezing. It can also be passed on by touching contaminated surfaces.

initiation of an immune response, including antigen	Question 5a (2 marks) Identify whether measles is caused by a cellular or	Answer: ● Measles is a viral disease and is, therefore, non-cellular.
presentation, the distinction between self- antigens and non- self antigens, cellular and non- cellular pathogens and	non-cellular pathogen, and provide one piece of information to support your answer.	 AND any one of: Viruses need a host to reproduce. Viruses cannot reproduce independently. Viruses do not have cellular components/organelles. Viruses do not have ribosomes, a cell membrane or a cytosol.
allergens		Marking Protocol: One mark for the correct identification and a second mark for a correct supporting piece of information.

physical, chemical and microbiota barriers as preventative mechanisms of pathogenic infection in animals and plants	Question 5b (2 marks) Referring to the modes of transmission of measles, describe one physical and one chemical first line of defence.	 Answer: Physical barriers An intact skin barrier; to prevent the entry of pathogens after contact with a contaminated surface. Mucus; to trap any virus that enters through respiratory droplets. Cilia; to sweep the virus away from the airways (to the digestive tract).
		 Chemical barriers Acidic sweat; to destroy the virus on the skin. Stomach acid; to destroy the ingested/swallowed virus. Lysosomal enzymes in the saliva; to break down the virus (if it entered through the mouth).
		Marking Protocol: One mark for any one of the points for physical defence and one mark for any one of the points for chemical defence, to a maximum of two.
		Note: There must be a description and not simply an identification of a defence mechanism to warrant a mark (e.g. 'intact skin' alone would receive no marks).

MMR (measles-mumps-rubella) is the vaccine that is available to protect people from measles. In Australia, children receive two doses of the MMR vaccine – the first when they are 12 months old and the second when they are 18 months old. 90% of those who are not immunised against measles catch the disease after an exposure event.

		Source: https://www.abc.net.au/news/health/2019-04-10/measles-spikes-prompts-immunisation-warning-are-you-at-risk/10986172
vaccination	Question 5c (4 marks)	Answer:
programs and their role in	Outline how the MMR	ullet The MMR vaccine contains measles antigens/proteins that induce an
maintaining herd	vaccine works to provide	immune response.
immunity for a specific disease in	protection against	 B plasma cells produce measles-specific antibodies.
a human population	measles.	 B memory cells specific to measles are produced.
		AND either:
		• This provides protection/immunity as, upon subsequent exposure, the immune response is faster and greater than if no vaccination had occurred.
		OR
		 This leads to an immediate immune response if exposed to the virus after vaccination, providing protection against measles.
		Marking Protocol:
		One mark for each of the above points.

the difference between natural and artificial immunity and active and passive strategies for acquiring immunity	Question 5d (2 marks) Justify whether MMR vaccination is an example of active or passive immunity.	 Answer: Vaccination is an example of active immunity. AND any one of: A vaccinated individual makes their own antibodies. A vaccinated individual makes their own memory cells.
		Marking Protocol: One mark for each of the above points.
vaccination programs and their role in maintaining herd immunity for a specific disease in a human population	Question 5e (3 marks) The MMR vaccine is important for two reasons. It allows individuals immunised to both protect themselves and the wider population by enabling herd immunity to be achieved.	 Answer: Herd immunity is when an overwhelming/significant majority of a population is vaccinated, which leads to reduced spread of measles, as there are fewer hosts carrying the virus. It also contributes to the protection of those that cannot be vaccinated, such as babies, the elderly or the immunocompromised. Marking Protocol: One mark for each of the above points.
	Explain the importance of herd immunity for containing an outbreak of a contagious disease such as measles, and protecting the community.	

Galápagos Island Tortoises on the slopes of the Alcedo volcano, referred to as the Alcedo Volcano Tortoise population, have comparatively lower genetic diversity than compared with other Galápagos Island tortoise populations. Evidence of volcanic eruptions burying areas of the Alcedo Volcano Tortoise population habitat in pumice and ash have been found.

causes of	Question 6a (1 mark)	Answer:	
changing allele frequencies in a population's gene	Identify the process that most likely resulted in a	• The bottleneck effect.	
pool, including environmental	reduced population size	Marking Protocol:	
selection pressures, genetic	of the Alcedo Volcano Tortoise population,	One mark for the above point.	
drift and gene flow; and	following the volcanic		
mutations as the source of new	eruptions.		
alleles			

Source: https://en.wikipedia.org/wiki/Population_bottleneck

Biological consequences of changing allele frequencies in terms of increased and decreased genetic diversity	Question 6b (2 marks) Provide two reasons why the process that was identified in Question 6a could contribute to the lower genetic diversity in the Alcedo Volcano Tortoise population.	 Answer: The Alcedo volcano tortoise population has a reduced gene pool due to its smaller population size. Certain alleles may have been lost from the population when tortoises died. Some alleles may be represented at a greater percentage than others as, due to chance, as they were possessed by tortoises that survived. Smaller populations are more vulnerable to genetic drift. Inbreeding in the population can occur leading to the same alleles being passed on to the next generation repeatedly. Marking Protocol: One mark for any of the above points, to a maximum of two.
manipulation of gene pools through selective breeding programs	Question 6c (2 marks) A different population of Galápagos Island Tortoises, the Giant Tortoise species, have seen a reduction in their population numbers over time in the Galápagos Islands. Scientists have observed, that in the first five years in the wild, Giant Tortoise mortality rates are at their highest due to a lack of food and water, as well as the predation of hatchlings. Today, there are conservation programs to revive Giant Tortoise populations. Adapted From: https://www.galapagos.org/conservation/giant- tortoise and outline how this may increase population size.	 Answer: Captive breeding in the first five years. This ensures that tortoises have adequate access to food and water as well as protection from predators. OR The removal of predators by culling or trapping. This reduces the number of hatchlings that are eaten so that more can survive to a mature age. Marking Protocol: One mark for each of the above points. Note: Please accept any other reasonable suggestion with an adequate explanation.

Lord Howe Island, found 600km from Australia's mainland, is a very small, isolated subtropical island that was formed from volcanic remains. It is shown in reference to Australia's east coast on the map below, in the centre of the triangle.

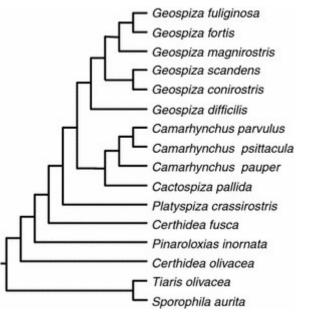
There are two *Howea* palm plant species on Lord Howe Island and they survive in close proximity to one another; these palms do not rely on insects for pollination but on wind dispersal of pollen instead.

Adapted From: https://www.mq.edu.au/data/assets/pdf_file/0007/1217293/Plant-of-the-week-Lord-Howe-Island-Palms-Howea-spp.pdf
--

Adapted From: https://www.mg.edu.au/ data/assets/pdf file/0007/1217293/Plant-of-the-week-Lord-Howe-Island-Palms-Howea-spp.pdf

evidence of speciation as a	Question 7a (2 marks)	Answer:
consequence of	State the type of	• Sympatric speciation.
isolation and genetic divergence, including	speciation of which	• This is because there is no geographical isolation between the two
Galapagos finches as an example of allopatric speciation	Howea palms are an example. Justify your	species.
and Howea palms on	answer.	Marking protocol:
Lord Howe Island as an example of		One mark for each of the above points.
sympatric speciation		

The two Howea palm species are called 'Belmore palms' and 'Kentia palms.'

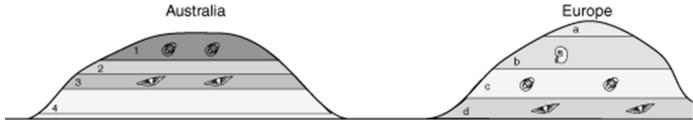

Belmore palms grow on volcanic soils, whereas Kentia palms grow on calcareous soil, which is composed mostly of calcium carbonate. The soil type also seems to affect the flowering times of the two different plants. Calcareous soils, where Kentia palms successfully grow, are low in nutrients, causing flower production to occur six weeks before the Belmore palms, which grow on nutrient-rich volcanic soils.

Given that both species are wind-pollinated, biologists believe that there is enough evidence that speciation has occurred.

evidence of speciation as a	Question 7b (2 marks)	Answer:
consequence of	Describe the term	• Selection pressure is an environmental factor that affects the survival
isolation and genetic divergence, including	selection pressure. Using	of a species.
Galapagos finches as	the provided information	• The selection pressure in the Howea palm example is different soil
an example of allopatric speciation	about the two <i>Howea</i>	types.
and Howea palms on Lord Howe Island as	palm species, identify	
an example of	the selection pressure	Marking Protocol:
sympatric speciation	that was involved in this	One mark for each of the above points.
	example.	

causes of changing allele frequencies in a population's gene pool, including environmental selection pressures, genetic drift and gene flow; and mutations as the source of new alleles evidence of relatedness between species: structural morphology — homologous and vestigial	Question 7c (2 marks) Biologists have sequenced the DNA of various Kentia palms and Belmore palms. They found that there were a small number of genetic differences between different palms of the same species; they also found that there was a significant amount of shared DNA between the two different species of palms.	 Answer: Genetic variation between members of the same species is due to random mutations. Shared DNA between members of different species is due tosharing a recent common ancestor. Marking Protocol: One mark for each of the above points.
structures; and molecular homology – DNA and amino acid sequences	Explain the biological reasons for both of these findings.	

The diagram below shows the evolutionary relationship between different finches in the Galapagos Islands.



Source: https://link.springer.com/article/10.1007/s10682-008-9257-1/figures/1

the use and	Question 8a (1 mark)	Answer:
interpretation of phylogenetic trees	Identify a molecule other	• RNA/amino acids/protein.
as evidence for	than DNA that can be	
the relatedness	used to construct a	Marking Protocol:
between species	diagram such as the one	One mark for the above point.
	above.	

evidence of relatedness between species: structural morphology – homologous and vestigial structures; and molecular homology – DNA and amino acid	Question 8b (3 marks) Explain which species you would expect <i>Geospiza scandens</i> to share the most DNA in common with.	 Answer: Geospiza scandens would share the most DNA with Geospiza conirostris, as they share the most recent common ancestor. Since they diverged most recently from a common ancestor compared with other species, there will have been less time since the divergence hence, a lower number of mutations will have accumulated, resulting in the species having more DNA in common.
sequences the use and interpretation of phylogenetic trees as evidence for the relatedness between species		Marking Protocol: One mark for each of the above points.

Study the following diagram comparing fossils that are found in Australia and Europe.

Source: https://www.geol.umd.edu/~jmerck/geol342/lectures/18.html

changes in species over geological time as evidenced from the fossil (fossil) succession, index and transitional fossils, relative and absolute dating of fossils

Question 9a (2 marks) Identify the oldest fossil layers for both Australia

Answer:

- The oldest fossil layer in Australia is '3.'
- The oldest fossil layer in Europe is 'd.'

Marking Protocol:

One mark for each of the above points.

changes in species over geological time as evidenced from the fossil record: faunal (fossil) succession, index and transitional fossils, relative and absolute dating of fossils Question 9b (2 marks) Name the dating technique that is depicted in the diagrams. Identify one limitation of this technique.

Answer:

• Stratigraphy/relative dating.

AND one of:

- This technique only gives the age of a fossil relative to another fossil; it does not give the actual age of a fossil.
- Sometimes, rock strata shift positions, which makes it difficult to date the age of fossils accurately.

Marking Protocol:

One mark for each of the above points.

changes in species over geological time as evidenced from the fossil record: faunal (fossil) succession, index and transitional fossils,	Question 9c (3 marks) The fossils in the top layer of the Australian rock strata are found in the second-last layer (c) in the European	 Answer: This is an index fossil. It is useful in dating geological periods. In this example, it is useful to show that Australian strata '1' is the same/similar age as European strata 'c.'
relative and absolute dating of fossils	example.	Marking Protocol: One mark for each of the above points.
	Identify this type of fossil and how it is useful in this example of relative dating between areas in Australia and Europe.	

How do you make a universal flu vaccine? A microbiologist explains the challenges, and how mRNA could offer a promising solution.

Published in The Conversation: February 8, 2023

The recent success of mRNA vaccines for COVID-19 shows promise for their use in achieving the vision of an effective universal influenza vaccine.

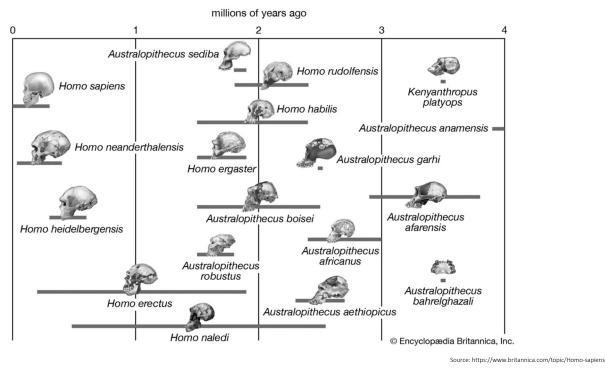
There are 20 known subtypes of influenza. Prior to the development of mRNA vaccines, it wasn't feasible to make a single flu vaccine against all 20 subtypes due to the complexities and costs in manufacturing. Unlike traditional vaccines, constructing and producing mRNA vaccines is rapid and simple because manufacturers don't have to produce and purify the protein directly. Instead, mRNA vaccines provide the genetic sequence of the protein and then use the body's own cells to generate that protein in its natural structure. This makes it relatively easy to incorporate any antigen or many antigens.

Recently, a team of researchers designed a mosaic mRNA vaccine with sequences from multiple versions of the haemagglutinin protein, each representing one of the 20 influenza subtypes. This vaccine induced broad immunity against each variant in mice and ferrets.

There are still several challenges before a universal influenza mRNA vaccine can be made available.

For one, it is not clear which conserved antigens provide the broadest protection and some don't naturally induce strong immune responses; so, mRNA vaccines may need improvements, like additional components that help activate immune cells. One such addition could include using mRNA to express nanoparticles that stimulate stronger immune responses against the conserved antigens that are presented by the vaccine.

The mosaic approach is also limited by the maximum dose possible for mRNA vaccines because higher doses could cause increased adverse reactions to the vaccine. When that dose gets divided into 20 or more antigens, the dose of one or more of those antigens may drop below the threshold that is needed for protection.


Scientists are working on these challenges, including by developing new mRNA technologies that work with a much lower dose. If mRNA vaccines work for universal protection from influenza, the same strategies could also apply to other frequently mutating viruses, such as the virus that causes COVID-19 and maybe even HIV.

Adapted From: https://theconversation.com/how-do-you-make-a-universal-flu-vaccine-a-microbiologist-explains-the-challenges-and-how-mrna-could-offer-a-promising-solution-195807

consequences of bacterial resistance and viral antigenic drift and shift in terms of ongoing challenges for treatment strategies and vaccination	Question 10a (2 marks) The article states that there are 20 influenza subtypes. Identify and describe the biological process that causes this to occur.	 Answer: Antigenic shift. This involves small, gradual changes (mutations) in the genes that code for viral antigens. Marking Protocol: One mark for each of the above points. 					
against pathogens	causes this to occur.						
analyse and evaluate bioethical issues using relevant approaches to bioethics and ethical concepts, including the influence of social, economic, legal and political factors relevant to the selected issue	Question 10b (2 marks) Referring to the information in the article, discuss one social and one biological implication of designing mosaic mRNA vaccines.	 Answer: Social It is easier to provide protection for the community/herd immunity with one vaccine that covers all influenza subtypes. Producing mosaic mRNA vaccine is a rapid and simple procedure that allows quicker access to vaccines for the community. If mRNA vaccines are effective with influenza, the technology could be applied to other rapidly mutating viruses, such as HIV, protecting community members from these conditions. 					
		 Biological mRNA vaccines include genetic sequences that the body then uses to produce the protein antigens, making it easier to include new mutated antigens. These vaccines provide broad immunity. A biological limitation of mosaic vaccines is that it is not clear which conserved antigens provide the broadest protection and some do not naturally induce strong immune responses. mRNA vaccines are limited in that there is a maximum dose that is possible, which may prevent the vaccine from adequately covering all influenza subtypes. 					
		Marking Protocol: One mark for any of the above points, to a maximum of two. Note: The response must include one social aspect and one biological aspect to obtain full marks.					

analyse and	Question 10c (1 mark)	Answer:
evaluate bioethical issues using relevant approaches to bioethics and ethical concepts, including the influence of social, economic, legal and political factors relevant to the selected issue	Human clinical trials, where vaccines are tested on people to see if they are safe and effective, must be carried out before a vaccine is made available to the broader population.	 The participants need to give informed consent, this relates to the concept of respect. The safety of the participants needs to be maintained (e.g. with fast access to medical professionals in case of unexpected side effects), this relates to the concept of non-maleficence. Scientists need to commit to having integrity while conducting the trial and reporting findings honestly whether favourable or not. The participants' health information must be kept private, this relates to the concept of respect.
	Outline one ethical consideration scientists conducting the trials would need to address.	Marking Protocol: One mark for any one of the above points. Note: Any other reasonable response should be awarded a mark.

The diagram below provides simple estimated time ranges for different hominin species.

analyse and interpret qualitative and quantitative data	Question 11a (1 mark) Which species is the oldest species that is	Answer: • Australopithecus anamensis.					
to provide evidence, recognising patterns, relationships and limitations of data	depicted on the diagram?	Marking Protocol: One mark for the above point.					

evidence for major trends in hominin evolution from the genus Australopithecus to the genus Homo: changes in brain size and limb structure

Question 11b (2 marks) List two structural trends

in the evolution of hominins from the *Australopithecus* genus to the *Homo* genus.

Answer:

- An increased cranial capacity/brain size.
- A reduced arm-to-leg ratio.
- A more-central foramen magnum.
- Shorter and less-curved fingers and toes.
- A less prominent brow ridge/flatter face.
- A more-parabolic/less-rectangular jaw.

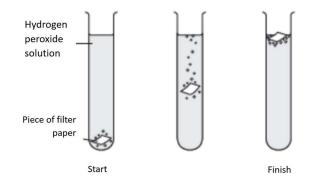
Marking Protocol:

One mark for any of the above points, to a maximum of two.

the human fossil record as an example of a classification scheme that is open to differing interpretations that are contested, refined or replaced when challenged by new evidence, including evidence for interbreeding between Homo sapiens and Homo neanderthalensis and evidence of new putative Homo species

Question 11c (2 marks) The diagram shows that Homo sapiens and Homo neanderthalensis have overlapping times of existence. Modern humans who live outside of Africa have been shown to have 1 - 4%Neanderthal DNA in their genome. This has led to a debate in the scientific community about whether to classify Homo sapiens and Homo neanderthalensis as separate species or as sub-species.

Answer:


- There are many gaps in the fossil record.
- As new discoveries of fossils are made, this can alter previous views or ideas that were held by scientists.
- Some fossils are incomplete or only very small fragments are found.
- There can be different interpretations of the limited evidence collected so far in the fossil record.

Marking Protocol:

One mark for any of the above points, to a maximum of two.

Adapted From: https://humanorigins.si.edu/evidence/genetics/ancientdna-and-neanderthals

Provide two reasons which explain how there can be disagreement between scientists when classifying different human species using the same fossil record. Students were testing the effect of temperature on the ability of catalase enzyme to break down hydrogen peroxide into oxygen gas. Each group of students completed three trials per temperature and measured the time that it took for paper soaked in catalase to rise when placed in a hydrogen peroxide solution.

Source: https://qrpastpapers.com/exam/1184

Table 1: Student Group 1 Results

Temperature (°C)	Trial 1	Trial 2	Trial 3
5	70 seconds	77 seconds	100 seconds
25	55 seconds	60 seconds	52 seconds
40	30 seconds	33 seconds	30 seconds
60	300 seconds	280 seconds	302 seconds

characteristics of the selected scientific methodology and method, and appropriateness of the use of independent,	Question 12a (1 mark) Identify two controlled variables that could be introduced to this experiment.	 Answer: The concentration of catalase. The concentration of hydrogen peroxide. The size of the paper disc. The volume of hydrogen peroxide solution. 						
dependent and controlled variables in the selected scientific investigation		Marking Protocol: One mark for any two of the above points.						
ways of organising, analysing and evaluating primary data to identify patterns and relationships including sources of error and uncertainty	Question 12b (2 marks) Identify the optimal temperature for catalase. Justify your answer by referring to the data that was collected by Student Group 1.	 Answer: The paper disc floated up most quickly when the temperature was 40°C. It took 30 to 33 seconds for the paper to float up, which is the fastest time when compared with the other temperatures. Marking Protocol: One mark for each of the above points. 						

Below are the results for another group of students.

Trial 1

72 seconds

25		72 3000103							
		55 seconds		56 seconds	51 seconds				
4	.0	40 se	econds	35 seconds	41 seconds				
60 150			econds	155 seconds	146 seconds				
accuracy, precision, reproducibility, repeatability and validity of measurements in relation to the nvestigation	Question 12c Analyse the r Table 2 and ju of the tempe measuremen least precise.	esults in ustify which rature	 Answer: The measurements for 60°C are the least precise. These measurements have the largest range/biggest difference (of nine seconds) when compared with the other temperatures. Marking Protocol: One mark for each of the above points. 						
the quality of evidence, including validity and authority of data and sources of possible errors or bias	Question 12c Compare the from Table 1 and identify w results could resulted from systematic en a cause of the	 Either 60° in Table 1 or 60° in Table 2 could be due to a sy error as the results for each trial in Table 1 are almost dout the results in Table 2 (or Table 2's results are almost half in Table 1). This could be due to having double the amount of enzyme added in Group 2 or half the amount of enzyme being added 							
			Marking Proto	ocol: each of the above points.					

Trial 2

75 seconds

Trial 3

71 seconds

Table 2: Student Group 2 Results

Temperature (°C)

5

VCE BIOLOGY Written Examination ANSWER SHEET – 2023

Student name:

Use a **PENCIL** for **ALL** entries. For each question, shade the box which indicates your answer.

Marks will **NOT** be deducted for incorrect answers.

NO MARK will be given if more than ONE answer is completed for any question.

If you make a mistake, **ERASE** the incorrect answer – **DO NOT** cross it out.

1	A	В	С	D	15	Α	В	С	D	29	Α	В	С	D
2	А	В	С	D	16	Α	В	С	D	30	Α	В	С	D
3	А	В	С	D	17	А	В	С	D	31	Α	В	С	D
4	A	В	С	D	18	Α	В	С	D	32	Α	В	С	D
5	A	В	С	D	19	Α	В	С	D	33	А	В	С	D
6	А	В	С	D	20	A	В	С	D	34	Α	В	С	D
7	A	В	С	D	21	Α	В	С	D	35	Α	В	С	D
8	А	В	С	D	22	А	В	С	D	36	Α	В	С	D
9	A	В	С	D	23	Α	В	С	D	37	А	В	С	D
10	Α	В	С	D	24	Α	В	С	D	38	А	В	С	D
11	Α	В	С	D	25	А	В	С	D	39	Α	В	С	D
12	А	В	С	D	26	Α	В	С	D	40	А	В	С	D
13	A [В	С	D	27	Α	В	С	D					
14	Α	В	С	D	28	А	В	С	D					