

© VCAA 2020

2019 VCE Algorithmics (HESS)
examination report

General comments
The 2019 Algorithmics (HESS) examination contained two sections. Section A was composed of
20 multiple-choice questions and Section B was composed of 16 short-answer and extended-
answer questions. Students achieved scores across the range of available marks, with higher-
scoring responses demonstrating an impressive grasp of challenging content.

Students attempted most questions, demonstrating a thorough engagement with the study design.
Most also paid careful attention to the requirements of each question and offered explanations
when the question called for a justification as part of the answer.

In Section B, students showed a good understanding of theoretical computing concepts such as
complexity classes, decidability and tractability (Questions 5, 6a., 7b., 8 and 9). The proportion of
responses relying on memorisation rather than understanding was low, and the use of dot points
for multi-part responses appeared to help students write clear and concise responses. However,
many responses used the concept of the NP complexity class incorrectly, most often by suggesting
that problems that are in NP are hard. This is not the case.

In Section B, several questions included diagrams to aid students in their responses. It is important
that students distinguish between diagrams that are used to illustrate a context (as in Question 13),
and those that are integral to the question and/or response (as in Questions 6, 7 and 15). The
former will often be flagged in a question by terms like ‘for example’, and in such instances
students must answer the question by considering the general problem rather than the specific
example. For instance, in Question 13, considering a school with some unknown number of
classrooms was appropriate, as the table was given as an example only.

All three questions asking for pseudocode in Section B (Questions 5, 7c. and 12c.) were complex
in nature, and elicited a wide range of student responses, including some outstanding responses.
Where pseudocode adhered too closely to the syntax of a programming language, it was primarily
Python, which is generally accepted due to its easy readability. However, many students who
seemingly had an understanding of what they wanted to write were often unable to employ the
necessary looping structure. Students are encouraged to experiment with different looping
structures throughout the year, and in particular to be familiar with each of the following three
which often prove useful in solving Algorithmics (HESS) problems:

• for i = 1 to n
• for element in Abstract Data Type (e.g. for node in graph)
• while condition A is not met.

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 2

Specific information
Note: Student responses reproduced in this report have not been corrected for grammar,
spelling or factual information.

This report provides sample answers or an indication of what answers may have included. Unless
otherwise stated, these are not intended to be exemplary or complete responses.

The statistics in this report may be subject to rounding resulting in a total more or less than 100 per
cent.

Section A – Multiple-choice questions
The table below indicates the percentage of students who chose each option. The correct answer
is indicated by shading.

Question % A % B % C % D % No
answer Comments

1 3 1 9 86 0

2 56 20 18 4 2
The NP class, by definition, contains all
problems for which solutions are quickly
verifiable.

3 0 10 84 6 0

4 13 72 3 11 1

5 8 3 1 86 1

6 12 36 25 28 0

Both mergesort and quicksort have the
recurrence relation

T(n) = 2T �n
2
� + O(n)

7 64 9 14 12 2

8 40 22 30 8 0

Whether quicksort will run in its worst
case runtime depends on the choice of
pivot. Since this is not known here,
randomising the input will minimise the
chance of the worst case occurring.

9 5 70 5 19 0

10 8 3 58 31 0

11 1 3 31 65 0

12 19 11 61 9 0

13 8 86 5 1 0

14 28 54 14 3 2
Students are encouraged to approach
this type of question by a process of
elimination.

15 0 97 1 3 0

16 23 1 72 4 0 Both options A and C were accepted.

17 10 25 61 4 0

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 3

18 23 42 19 16 0
Big-Theta is a ‘sandwich’ bound, which
implies both an upper and a lower
bound.

19 5 5 19 70 0

20 46 14 8 32 1
Dynamic programming solves sub-
problems once and uses the solutions
for larger subproblems.

Section B
Question 1

Marks 0 1 2 3 Average

% 7 25 48 19 1.8

High-level responses included two common elements: the idea that the tape is read and written to,
and the idea that it is used for storage, input and output. Various examples were used by students
to support their answer, with some students comparing the tape to the memory in a digital
computer, while others referenced Turing’s original conception of the tape as akin to unlimited
working paper.

Lower-scoring responses gave the definition of a Turing Machine rather than engage with the
question, and some conflated the tape with the table of instructions in a Turing Machine.

Question 2

Marks 0 1 2 Average

% 34 45 21 0.9

Any permutation of the array [0, 2, 4, 6, 8, 10, 12, 14] would lead to the best case running time, as
the asymptotic running time of mergesort is 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) irrespective of the structure of the input.

Some students focused on the idea that mergesort would perform roughly half as many
comparisons in the merge step if the two sub-arrays were sorted. So, for instance, [0, 2, 4, 6, 8, 10,
12, 14] or [8, 10, 12, 14, 0, 2, 4, 6,] would both lead to the best running time when taking into
account the constant term.

Both of the above approaches were accepted, with the former the more common. In general,
considering the constant term in running time analysis is beyond the scope of the course, so
students are encouraged to focus on asymptotic running time.

The most common misconception about this question was the idea that if an input is already
sorted, the sorting algorithm would recognise this and avoid going through its usual procedure.
There were many one-mark responses to this question because of incomplete or unclear
explanations.

Question 3a.

Marks 0 1 2 3 Average

% 5 4 1 90 2.8

After 8 and 3 are pushed into the ‘special location’, we encounter a ‘+’. So, both numbers will be
‘popped’ from the special location to perform the addition. The answer is 11 = (8 + 3) and 11 is

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 4

pushed back into the special location. Then, both 18 and 2 are pushed into the special location.
We then have a ‘÷’ sign, so the result is 9, and 9 is pushed back into the special location. Finally,
we have a ‘×’ sign. So, 11 and 9 are popped from the special location. The final answer will be
99 (= 11 × 9).

Most students scored full marks for this question, either through a verbal explanation as above or
through a diagrammatic approach.

Question 3bi.

Marks 0 1 2 Average

% 24 10 66 1.4

Most students were able to identify a stack as the appropriate ADT, due to its ‘last in first out’
structure.

Students who selected an inappropriate ADT for this question were still able to receive full marks
for the subsequent question if their ADT specification was correct for their chosen ADT.

Question 3bii.

Marks 0 1 2 3 Average

% 17 20 29 33 1.8

This question was generally done to a high standard. The following was a typical 3-mark response,
although other valid operations were included in some responses.

Name : stack
Import : element, boolean
Operations: newStack :  stack

isEmpty : stack  boolean
push : stack x element  stack
pop : stack  stack
peek : stack  element

Students needed to include a constructor (newStack), an isEmpty operation and the standard
push, pop and peek operations on a stack. Other unambiguous names for the same operations
(e.g. ‘top’ instead of ‘peek’) were also accepted. A few students mistakenly attempted to define a
pop operation that both returned an element and altered the stack.

Question 4a.

Marks 0 1 2 Average

% 10 42 47 1.4

The worst case time complexity is 𝑂𝑂(𝑛𝑛2). As the calls to sortAscending and median are made
sequentially, the overall running time will be 𝑂𝑂(𝑛𝑛2 + 𝑛𝑛2 + 1 + 1) = 𝑂𝑂(𝑛𝑛2).

Most students recognised the worst case time complexity of isGreaterOrEQual, but some were
unable to clearly explain their answer. In particular, many students did not include that the two
sortAscending calls were made sequentially in their responses.

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 5

Question 4b.

Marks 0 1 2 Average

% 34 17 48 1.2

Most students correctly identified that a median is not a proxy for whether one array is greater than
another. Some students provided a correct example but did not explain it. When asked to explain
with an example, students are reminded that an explanation is required.

The following is an example of a high-scoring response:

It is incorrect. For example if A was {1, 2, 50, 51, 52} with a median of 50 and B was {10, 20, 40,
60, 70} with a median of 40. Although A has a larger median, all other elements are smaller and
thus the pseudocode is incorrect.

Question 5

Marks 0 1 2 3 4 Average

% 24 18 27 20 11 1.8

The following two algorithms are required to demonstrate the undecidability of the Halting Problem.
Halt(P, i)

If P(i) does halt Then
 return True
Else
 return False

H*(Q)
 If Halt(Q, Q) Then
 Loop forever

return True

By a diagonalization argument, when we run H*(H*) we encounter a contradiction:

• If H* halts, when it gets passed into H*, H* will run forever. This implies H* both halts and
doesn’t halt, a contradiction.

• If H* doesn’t halt, when it gets passed into H*, H* will halt. This implies H* both doesn’t halt and
does halt, a contradiction.

Therefore, H* cannot exist, and thus the Halt algorithm, the solution to the Halting Problem, cannot
exist either. As no solution to the Halting Problem can exist, it is undecidable.

Students struggled to answer this question in full, but most were able to engage with the concept
and make a serious attempt. There were, however, a number of misconceptions evident in student
responses. Most commonly, while students were able to express the idea that a contradiction
exists somewhere, few could clearly explain the contradiction or what this contradiction implies for
the decidability of the Halting Problem. Other errors included incorrect or incomplete inputs,
swapping the return of True and False and passing Halt into H* instead of H* itself.

Some high-scoring responses provided an alternative approach to this question, defining and
explaining the Halting Problem itself rather than demonstrating its undecidability.

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 6

Question 6a.

Marks 0 1 2 3 4 Average

% 14 41 23 21 2 1.6

The proposed network is small with 6 stations and fewer than 32 paths, therefore brute-force is
feasible. If the tracks were to expand, brute-force may become infeasible as the problem scales
poorly, with a brute-force solution having an asymptotic running time of 𝑂𝑂(2𝑛𝑛) where n is the
number of platforms. This is because for each platform the train can either be at the platform or not
be at the platform.

This question required students to consider both the specific network given as a diagram in the
description for Question 6, as well as the more general idea of an exponential problem. Many
students who achieved partial marks considered only one of these aspects. Students should take
care to note the language referring to any diagram, and in this case the words ‘the proposed
network is modelled below’ suggest that this particular network should be engaged with in some
way.

Some responses gave 𝑂𝑂(𝑛𝑛!) as the running time of the brute-force algorithm, and seemed to
suggest that this running time is inevitable when a problem scales poorly. This is not the case.
Students are encouraged to consider what structures give rise to 𝑂𝑂(𝑛𝑛!) running time (e.g. as in the
Travelling Salesman Problem) and what structures give rise to 𝑂𝑂(2𝑛𝑛) running time (e.g. as in the
Knapsack Problem). Understanding this makes it simpler to derive the time complexity for an
unfamiliar problem.

Question 6b.

Marks 0 1 2 3 Average

% 21 39 25 15 1.4

Dynamic programming is useful on problems that have optimal substructure and overlapping
subproblems. This problem has optimal substructure because having the optimal schedule for the
𝑛𝑛 − 1 station subproblem makes it simple to solve the 𝑛𝑛 station subproblem. The subproblems are
overlapping since, for instance, the 6 station subproblem contains the 5 station subproblem.

Many students were able to recall the properties that problems require to be solvable by dynamic
programming; however, students are encouraged to make the connection between their
understanding of the concept and the specifics of the context more explicit.

Question 7a.

Marks 0 1 2 Average

% 21 51 28 1.1

The ideal sample can be coloured using exactly two colours. A sample with various impurities such
as Figure 2 cannot be 2-coloured. Therefore, graph colouring can be used to distinguish between
pure and impure samples.

Many students were able to show an understanding that as a substance becomes less pure, the
number of colours required to colour it increases. However, some did not engage with the specific
properties of the ideal structure as illustrated in Figure 1.

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 7

Question 7b.

Marks 0 1 2 3 Average

% 22 30 29 19 1.5

A variety of responses were accepted as students approached the question from a range of
perspectives. High-scoring responses that answered in the affirmative justified their answer in one
of two broad ways:

• Greedy graph colouring runs in pseudo-polynomial time, and so would be sufficiently fast to
handle larger strongsheets. A greedy approach is sufficient as there is not a strict mapping
between the number of colours and purity, so an optimal number of colours in not required.

• Greedy graph colouring runs in pseudo-polynomial time, and so would be sufficiently fast to
handle larger strongsheets. A greedy approach is sufficient as testing for 2-colouring can be
done correctly with a greedy approach.

High-scoring responses that answered in the negative tended to explain that as the size of the
strongsheet increases, the search space for graph colouring will suffer a combinatorial explosion.
As graph colouring is an NP-Complete problem, there is no known algorithm that will solve it in
polynomial time.

Two misconceptions were evident in student responses. The most common was confusing the
concept of verifying a particular colouring of a graph (which can be done in polynomial time) with
the concept of checking whether a graph can be coloured with a certain number of colours (which
is the decision version of the graph colouring problem, and is in NP-Complete). The broader error
evident in many responses was conflating NP and NP-Complete, and arguing that if a problem is in
NP it cannot be solved in polynomial time.

Question 7c.

Marks 0 1 2 3 4 5 Average

% 31 28 15 15 8 3 1.5

This question required students to demonstrate both a strong understanding of a studied algorithm
and the ability to write pseudocode that would handle the details of a particular given context. Most
students were able to construct a response that contained elements of what was required, but
complete and correct responses were rare.

Of the high-scoring responses, some students calculated the number of colours required for a
given graph, while others opted to check whether a graph was able to be coloured with exactly two
colours (see Question 7b.). The solution below is an example of the latter.
Input: A graph, G, representing a given structure
Output: True if graph can be coloured with 2 colours (here denoted 1 and
2), False otherwise
Colour_two(G):
 Let Q be an empty queue
 Let A be a randomly selected node in G
 Colour A with 1
 Enqueue A to Q
 While Q is not empty:
 v = Q.front()
 Q.pop()
 for neighbour of v:
 if neighbour is uncoloured:

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 8

 colour neighbour with opposite colour to v
 Enqueue neighbour to Q
 else if neighbour has same colour as v:
 return False
 return True

There were a number of errors in the student responses. The most prevalent was the omission of
some sort of looping mechanism that would iterate over all the nodes in the graph as well as the
omission of a return statement or output. Another common error was an attempt to describe or use
dot points for the required algorithm rather than writing it in pseudocode. Students are reminded
that when instructed to write an algorithm, rather than to describe or outline one, the answer
should be in pseudocode.

Question 8

Marks 0 1 2 3 4 Average

% 14 25 30 23 8 1.9

Most students attempted to give a definition of both theses, although the precision in responses
varied. When a concept is explicitly included in the study design, it is important for students to have
engaged with this concept in some detail. For example, the statement that ‘the Church-Turing
thesis outlines what Turing Machines can do’ is not incorrect, but it doesn’t represent a definition
within the scope of this study. Fewer students tried to explicitly explain the relationship between the
two theses.

The following is an example of a high-scoring response:

• The Church-Turing Thesis states that any function is effectively calculable by some
method if it is computable on a Turing Machine. This thesis defines the hard limits of
computation

• Cobham’s Thesis states that a problem is feasibly computable if it can be computed in
polynomial time, that is it lies in the P complexity class. Cobham’s thesis defines the soft
limits of computation.

• Both these theses attempt to describe what is computable, with Church-Turing describing
what’s theoretically computable and Cobham’s describing what’s practically computable.

Question 9

Marks 0 1 2 3 4 Average

% 13 30 31 22 4 1.8

In DNA computing, components of a particular problem are encoded using synthesised DNA
sequences. Trillions of DNA sequences are combined in the lab and, through biological processes,
longer sequences encoding all possible candidate solutions to the problem are created. Then the
best candidate solutions can be filtered out using certain lab processes. As DNA computing
represents massively parallel processing as opposed to the sequential processing of digital
computers, it can (theoretically) be used to overcome the soft limits of computation.

No specific terminology pertaining to the biological or lab processes was required. A common
mistake was to focus on only one aspect of the question in detail, rather than addressing both how
DNA computing works and how it can overcome the limits of computation.

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 9

Question 10

Marks 0 1 2 3 4 5 Average

% 17 28 18 17 8 12 2.1

Most students were able to attempt an argument by induction, often demonstrating that they
understood the elements that are required even if some responses lacked rigour. In particular, the
establishment of the base case and a clear statement of the inductive hypothesis were done well in
a majority of responses.

The most common error was the failure to reference the inductive hypothesis anywhere after the
original assumption. Students are reminded that there is no value in making an assumption if that
assumption is not used anywhere in the argument.

The following is an example of a high-level response:

Let |𝐾𝐾| denote the no. of vertices in tree T and |𝐸𝐸| denote the no. of edges

BASE CASE: let 𝑛𝑛 = 1, |𝐸𝐸| = 0 = (𝑛𝑛 − 1) (TRIVIAL) ∴ 𝑛𝑛 = 1 is TRUE

INDUCTIVE HYPOTHESIS: assume n=k is true

adding one more node to T gives n = k + 1

∴ |𝐸𝐸| = (𝑘𝑘 − 1) + 1
= 𝑘𝑘 = (𝑘𝑘 + 1) − 1
∴ 𝑛𝑛 = 𝑘𝑘 + 1 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

Question 11

Marks 0 1 2 Average

% 19 13 69 1.5

The majority of the responses gave both the correct tree and the correct series of edges. Of the
responses that were awarded 1 mark, the most common error was omitting the order of edges or
recording them incorrectly.

Order of edges: AB, AD, DG, DE, EH, EC, DF

1 edge

k-1 edges k-1 edges

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 10

Question 12a.

Marks 0 1 Average

% 40 60 0.6

The next row is 0001101011. The most common error was incorrectly handling the edge values.

Question 12b

Marks 0 1 2 3 Average

% 13 17 19 51 2.1

The decision tree below captures the decisions required to implement the cellular automata.

Complete decision trees (with eight leaves) were also accepted.

Students who understood the concept of using a decision tree to represent decisions being made
within an algorithm completed the question correctly; however, a significant number of students
needed to develop a greater understanding of the connection between decision trees and
conditional statements in algorithms.

C B A

H F

E D

G

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 11

Question 12c.

Marks 0 1 2 3 4 Average

% 37 11 19 23 11 1.6

Most students engaged with the question and demonstrated an understanding of how a worded
procedure – as described in the question – could be written in pseudocode. Some mid-range
responses tended to use only a single loop through the array, thereby completing only one iteration
of the cellular automata. Other mid-range responses did not handle assignment of new values well,
often overwriting the array too early or not changing the array at all. Additionally, some responses
called a function that would correctly generate the next array without explicitly writing this function
anywhere.

More broadly, there was little evidence that students proofread or tested their pseudocode.
Students are highly encouraged, where time permits, to execute their code line-by-line on some
example inputs to check for correctness.

High-scoring responses tended to take one of three approaches: returning the nth row (with n as
input), returning the first n rows (with n as input) or returning the row number corresponding to
when a row entirely composed of 0s was first reached. All three were deemed reasonable readings
of the question and awarded full marks if correct.

The following is a solution for the third interpretation, returning the row number corresponding to
when a row entirely composed of 0s was first reached.
Cellular_automata(an array A):

prev = [0] + input + [0]
n = 1
while not prev = [0,0,0,0,0,0,0,0,0,0]:

row = [0,0,0,0,0,0,0,0,0,0]
for j = 1 to 8:

if prev[j-1] = 1
 if min(prev[j],prev[j+1]) = 0
 row[j] = 1

prev = row
n = n + 1

return n

Question 13

Marks 0 1 2 3 4 Average

% 21 42 15 15 7 1.5

Donna’s problem is akin to the Travelling Salesman Problem. Assuming the total number of forms
is not too heavy to carry in one folder or bag, Donna could model her school using a complete,
weighted graph, with each node representing a classroom and the weight on the edge between
any two classrooms representing the time it takes to walk between those two classrooms. Donna
could then use a heuristic such as simulated annealing to find a good solution to the TSP on her
graph, with her classroom as the source, and deliver the forms according to the solution found.

This question was not answered well, as many students focused too heavily on the example table
given and were therefore unable to relate the problem back to studied algorithmic concepts. Where
a diagram, table or illustration is prefaced with ‘For example’, students must consider the general
problem rather than the specific instance.

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 12

Some students also tried to answer the question in a novel way that did not relate directly to the
course, for instance by requiring that Donna asks students in her class to deliver the forms for her.
This style of response never scores well, and students are encouraged to always look for ways to
solve problems by applying studied concepts or modifications of them.

Question 14a.

Marks 0 1 2 Average

% 8 24 68 1.6

The answer is 𝑂𝑂(𝑛𝑛3), due to three nested for loops that each iterate through n integers.

Most students correctly identified the time complexity. Most 1-mark responses provided an
incomplete justification, often omitting the idea that each for loop iterates through n integers.

Question 14b.

Marks 0 1 2 3 Average

% 59 12 22 7 0.8

This question was not answered well. Some students did not engage with the question at all, while
others discussed what the given time recurrence might mean in general, rather than relating it to
Betty’s algorithm. Such responses were awarded no marks.

For full marks, responses were required to discuss the following two elements:

• each multiplication recursively calls 8 new multiplications of subarrays of half the size,
thus 8𝑇𝑇 �𝑛𝑛

2
�

• addition of resultant (n/2) x (n/2) subarrays is of 𝑂𝑂 ��𝑛𝑛
2
�
2
� ∈ 𝑂𝑂(𝑛𝑛2)

The majority of students who scored 1 or 2 marks were able to articulate the first point, but not the
second.

Question 14c.

Marks 0 1 2 Average

% 11 10 79 1.7

Using the Master Theorem 𝑇𝑇(𝑛𝑛) = 𝑂𝑂(𝑛𝑛3), because log𝑏𝑏 𝑎𝑎 = log2 8 = 3 > 2 = 𝑐𝑐

Most students applied the Master Theorem correctly.

Question 14d.

Marks 0 1 2 Average

% 26 15 59 1.3

Using the Master Theorem 𝑇𝑇(𝑛𝑛) = 𝑂𝑂(𝑛𝑛log2 7), because log𝑏𝑏 𝑎𝑎 = log2 7 = 3 > 2 = 𝑐𝑐. Therefore, the
new method is faster as log2 7 < 3.

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

2019 VCE Algorithmics (HESS) examination report

© VCAA Page 13

Question 15

Marks 0 1 2 Average

% 42 29 29 0.9

Many students were able to write down a version of the Page Rank formula, but the majority did
not correctly explain the function of the damping factor in the formula. In this subject, when learning
an algorithm or a formula, understanding the derivation is crucial.

The following is an example of a high-scoring response:

PR(D) = 1−𝑑𝑑
4

 + probability from incoming links

The Page Rank is dependent not only on incoming links, but also the chance that it is randomly
stumbled upon, which is 1−𝑑𝑑

4
 where d is normally 0.85. So, despite having no incoming links, it

has non-zero probability.

Question 16

Marks 0 1 2 3 4 Average

% 23 19 31 18 9 1.7

The minimax algorithm can be applied to a two-player, turn-based game on the assumption that
both players play optimally. That is, Stella will want to maximise her score at each turn, and
Cameron will want to minimise her score at each turn. Running the minimax algorithm will allow
Stella to generate a game tree like the one above, and then traversing the tree starting at the root
node would allow Stella to find the sequence of moves that will maximise her chances of winning.

It was evident that some students had studied the minimax algorithm but had not applied it to an
actual scenario using a game tree, while other students were able to complete the game tree but
could not provide an explanation.

http://www.vcaa.vic.edu.au/Pages/aboutus/policies/policy-copyright.aspx

	2019 VCE Algorithmics (HESS) examination report
	General comments
	Specific information
	Section A – Multiple-choice questions
	Section B
	Question 1
	Question 2
	Question 3a.
	Question 3bi.
	Question 3bii.
	Question 4a.
	Question 4b.
	Question 5
	Question 6a.
	Question 6b.
	Question 7a.
	Question 7b.
	Question 7c.
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12a.
	Question 12b
	Question 12c.
	Question 13
	Question 14a.
	Question 14b.
	Question 14c.
	Question 14d.
	Question 15
	Question 16

