

**HSC Trial Examination 2020** 

### **Mathematics Extension 1**

Solutions and marking guidelines

Neap Education (Neap) Trial Exams are licensed to be photocopied or placed on the school intranet and used only within the confines of the school purchasing them, for the purpose of examining that school's students only. They may not be otherwise reproduced or distributed. The copyright of Neap Trial Exams remains with Neap. No Neap Trial Exam or any part thereof is to be issued or passed on by any person to any party inclusive of other schools, non-practising teachers, coaching colleges, tutors, parents, students, publishing agencies or websites without the express written consent of Neap.

#### Section I

| Sample answer                                                                                                                             | Syllabus content, outcomperformance |             |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|
| Question 1 A                                                                                                                              | ME-F2 Polynomials                   |             |
| If $\alpha$ and $\alpha + 1$ are zeros of $P(x)$ , then                                                                                   | ME11-1                              | Bands E2–E3 |
| $P(x) = x^{2} - (2\alpha + 1)x + (\alpha^{2} + \alpha).$                                                                                  |                                     |             |
| Equating coefficients gives $b = -(2\alpha + 1)$ and $c = \alpha^2 + \alpha$ .                                                            |                                     |             |
| Question 2 D                                                                                                                              | ME-C2 Further Calculus              | Skills      |
| $\frac{d}{dx}(\tan^{-1}f(x)) = \frac{f'(x)}{1 + (f(x))^2}$                                                                                | ME12-1                              | Bands E2–E3 |
| f(x) = 2x - 1 and $f'(x) = 2$                                                                                                             |                                     |             |
| $\frac{d}{dx}(\tan^{-1}(2x-1)) = \frac{2}{1+(2x-1)^2}$ $= \frac{2}{4x^2-4x+2}$                                                            |                                     |             |
| $= \frac{4x^2 - 4x + 2}{2x^2 - 2x + 1}$                                                                                                   |                                     |             |
| Question 3 B                                                                                                                              | ME-S1 The Binomial Dis              | tribution   |
| Let <i>X</i> represent the number of tails where $X \sim \text{Bin}(3, p)$ and let <i>p</i> represent the probability of obtaining tails. | ME12-5                              | Bands E2–E3 |
| From the frequency distribution, it is clear that $p < 0.5$ .                                                                             |                                     |             |
| Consider:                                                                                                                                 |                                     |             |
| $\{1000P(X=0), 1000P(X=1), 1000P(X=2), 1000P(X=3)\}$                                                                                      |                                     |             |
| For $p = 0.3$ , the theoretical frequency distribution is                                                                                 |                                     |             |
| $\{343, 441, 189, 27\}$ , and for $p = 0.4$ it is $\{216, 432, 288, 64\}$ .                                                               |                                     |             |
| Compared to the given experimental frequency distribution,                                                                                |                                     |             |
| the closest theoretical distribution is for $p = 0.4$ .                                                                                   |                                     |             |
| Question 4 A                                                                                                                              | ME-T3 Trigonometric Eq              |             |
| $R\sin(x+\alpha) = R\sin x \cos \alpha + R\cos x \sin \alpha$                                                                             | ME12-3                              | Bands E2–E3 |
| $\sin x + \cos x = R \sin x \cos \alpha + R \cos x \sin \alpha$                                                                           |                                     |             |
| Equating coefficients of $\sin x$ gives $R\cos\alpha = 1$ . (1)                                                                           |                                     |             |
| Equating coefficients of $\cos x$ gives $R \sin \alpha = 1$ . (2)                                                                         |                                     |             |
| Squaring both (1) and (2) and adding gives $R^2 = 2 \Rightarrow R = \sqrt{2}$ (>0).                                                       |                                     |             |
| Substituting into (1) and (2) gives $\cos \alpha = \frac{1}{\sqrt{2}}$ and $\sin \alpha = \frac{1}{\sqrt{2}}$ .                           |                                     |             |
| So $\alpha = \frac{\pi}{4}$ and hence $\sin x + \cos x = \sqrt{2} \sin \left( x + \frac{\pi}{4} \right)$ .                                |                                     |             |

| Sample answer                                                                                                                                               |                                                  |                                                   |                                 |                             |                                                   | Syllabus content, outcomes and targeted performance bands |                            |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------|-----------------------------|---------------------------------------------------|-----------------------------------------------------------|----------------------------|-----------------------------------|
| Question 5 A                                                                                                                                                |                                                  |                                                   |                                 |                             | ME-A1 Working with Combinatorics                  |                                                           |                            |                                   |
| The table outlines the possible seating arrangements.                                                                                                       |                                                  |                                                   |                                 |                             |                                                   |                                                           | ME11–5, ME11–7 Bands E2–E3 |                                   |
| M1                                                                                                                                                          | M2                                               | M3                                                | M4                              | F1                          | F2                                                | F3                                                        | F4                         |                                   |
| 1                                                                                                                                                           | 3                                                | 2                                                 | 1                               | 4                           | 3                                                 | 2                                                         | 1                          |                                   |
| Therefo                                                                                                                                                     |                                                  | umber (                                           | of possil                       | ole seat                    | ing arrai                                         | ngemer                                                    | its is                     |                                   |
| Question 6 C  At $(0,0)$ , $\frac{dy}{dx} = 0$ and so <b>A</b> is incorrect.  At $(-1,1)$ , $\frac{dy}{dx} = 0$ and so <b>B</b> and <b>D</b> are incorrect. |                                                  |                                                   |                                 |                             | ME-C3 Applications of Calculus ME12–4 Bands E2–E3 |                                                           |                            |                                   |
| Questio                                                                                                                                                     | ил                                               | = 0 and                                           |                                 | na <b>D</b> ai              | e incorr                                          | ect.                                                      |                            | ME-V1 Introduction to Vectors     |
| $\overrightarrow{OD} = \overrightarrow{O}$                                                                                                                  |                                                  | <del>)</del>                                      |                                 |                             |                                                   |                                                           |                            | ME12–2 Bands E2–E3                |
| $=\frac{1}{2}$                                                                                                                                              | $\overrightarrow{OB} + \overrightarrow{A}$       | $\overrightarrow{B}$                              |                                 |                             |                                                   |                                                           |                            |                                   |
| $=\frac{1}{2}$                                                                                                                                              | $\overrightarrow{OB} + \overrightarrow{A}$       | $\overrightarrow{O} + \overrightarrow{OI}$        | <del>)</del><br>B               |                             |                                                   |                                                           |                            |                                   |
| $=\frac{1}{2}$                                                                                                                                              | <u>b</u> – <u>a</u> +                            | <u></u>                                           |                                 |                             |                                                   |                                                           |                            |                                   |
| $=\frac{3}{2}$                                                                                                                                              | b - a                                            |                                                   |                                 |                             |                                                   |                                                           |                            |                                   |
| Questio                                                                                                                                                     | n 8                                              | D                                                 | )                               |                             |                                                   |                                                           |                            | ME-C2 Further Calculus Skills     |
| $\int \frac{1}{\sqrt{4-9}}$                                                                                                                                 | $\frac{d}{dx} = \frac{1}{2} dx = \frac{1}{2} dx$ | $\int \frac{1}{\sqrt{9\left(\frac{4}{9}\right)}}$ | $\frac{1}{\left(-x^2\right)}dx$ | x                           |                                                   |                                                           |                            | ME12–1 Bands E2–E3                |
| Conside                                                                                                                                                     | r integr                                         | als of th                                         | ne form                         | $\int \frac{1}{\sqrt{a^2}}$ | $\frac{1}{x^2}dx =$                               | $\sin^{-1}\frac{2}{a}$                                    | $\frac{C}{a} + C$ with     |                                   |
| $a^2 = \frac{4}{9}$                                                                                                                                         | $\Rightarrow a = \frac{2}{3}$                    | (>0).                                             |                                 |                             |                                                   |                                                           |                            |                                   |
| $\frac{1}{3}\sin^{-1}$                                                                                                                                      | $\frac{x}{2} = \frac{1}{3} \operatorname{si}$    | $n^{-1}\frac{3x}{2}$                              |                                 |                             |                                                   |                                                           |                            |                                   |
| Questio                                                                                                                                                     |                                                  | C                                                 |                                 |                             |                                                   |                                                           |                            | ME-F1 Further Work with Functions |
| The par                                                                                                                                                     |                                                  | equatio                                           | ons are:                        |                             |                                                   |                                                           |                            | ME11–2 Bands E2–E3                |
| $x = \cos$                                                                                                                                                  |                                                  | (1)                                               |                                 |                             |                                                   |                                                           |                            |                                   |
| $y = 4 \sin \theta$                                                                                                                                         | $n^2t$                                           | (2)                                               |                                 |                             |                                                   |                                                           |                            |                                   |
| $\frac{(2)}{4}$ giv                                                                                                                                         | es $\frac{y}{4} = \frac{y}{4}$                   | $\sin^2 t$ .                                      | (3)                             |                             |                                                   |                                                           |                            |                                   |
| (1) + (3) and using $\cos^2 t + \sin^2 t = 1$ gives $x + \frac{y}{4} = 1 \Rightarrow 4x + y = 4$ .                                                          |                                                  |                                                   |                                 |                             | ÷4.                                               |                                                           |                            |                                   |
| $0 \le \cos^2 t \le 1$ and so $0 \le x \le 1$ .                                                                                                             |                                                  |                                                   |                                 |                             |                                                   |                                                           |                            |                                   |
| Therefo                                                                                                                                                     | re, $y = $                                       | 4 - 4x 1                                          | for $0 \le x$                   | $x \leq 1$ .                |                                                   |                                                           |                            |                                   |

3

| Sample answer                                                                                                                                      | Syllabus content, out performan | _           |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|
| Question 10 C                                                                                                                                      | ME-V1 Introduction to           | Vectors     |
| The diagonals of $OABC$ are given by $\overrightarrow{OB}$ and $\overrightarrow{CA}$ .                                                             | ME12-2                          | Bands E2–E3 |
| To prove they are perpendicular, form $\overrightarrow{CA} \cdot \overrightarrow{OB}$ and show that it                                             |                                 |             |
| equals zero. $\overrightarrow{CA} = \overrightarrow{a} - \overrightarrow{c}$ and $\overrightarrow{OB} = \overrightarrow{a} + \overrightarrow{c}$ . |                                 |             |
| Therefore $\overrightarrow{CA} \cdot \overrightarrow{OB} = 0$ if $(\underline{a} - \underline{c}) \cdot (\underline{a} + \underline{c}) = 0$ .     |                                 |             |

### Section II

|      |         | Sample answer                                                                                                                                                                                                                                                                                                                                                     | Syllabus content, outcomes, targeted performance bands and marking guide                                            |
|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Ques | tion 11 |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                     |
| (a)  | (i)     | $f(x) = x^2 - 4x + 6$ is a parabola. Excluding the turning point at $(2, 2)$ , for each value of $f(x)$ in the range there are two $x$ -values. Geometrically, this corresponds to a horizontal line intersecting the graph twice. If $x$ and $y$ are swapped, each $x$ -value in the domain will have two $y$ -values. Hence the inverse will not be a function. | ME-F1 Further Work with Functions ME11-1 Bands E2-E3  • Explains using the horizontal line test OR equivalent merit |
|      | (ii)    | Use the completing the square method to express $f(x)$ in turning point form:<br>$f(x) = x^2 - 4x + 6 \qquad (x \le 2)$ $= (x - 2)^2 + 2$ Swap $x$ and $y$ , then make $y$ the subject.<br>$x = (y - 2)^2 + 2$ $x - 2 = (y - 2)^2$ $y - 2 = -\sqrt{x - 2} \ (\sqrt{x - 2} \text{ is discarded as } y \le 2)$ $y = -\sqrt{x - 2} + 2$                              | ME-F1 Further Work with Functions ME11–1 Bands E2–E3  • Gives the correct solution                                  |
|      |         | $f^{-1}(x) = -\sqrt{x-2} + 2$                                                                                                                                                                                                                                                                                                                                     | NE ELE AND LE LE                                                                                                    |
|      | (iii)   | The domain is $x \ge 2$ as $x - 2 \ge 0$ .<br>The range is $y \le 2$ as $-\sqrt{x - 2} \le 0$ .                                                                                                                                                                                                                                                                   | ME-F1 Further Work with Functions ME11–1 Bands E2–E3 • States correct domain AND range2                             |
|      |         |                                                                                                                                                                                                                                                                                                                                                                   | States correct domain OR range                                                                                      |
|      | (iv)    | The curves $y = f(x)$ and $y = f^{-1}(x)$ have a common intersection with the line $y = x$ .<br>For example, attempting to solve $f(x) = x$ for $x$ :                                                                                                                                                                                                             | ME-F1 Further Work with Functions ME11-1 Bands E2-E3  • Gives the correct solution                                  |
|      |         | $x^{2} - 4x + 6 = x$ $x^{2} - 5x + 6 = 0$ $x = 2, 3$                                                                                                                                                                                                                                                                                                              | • Attempts to solve $f(x) = x$ for $x 	ext{ OR}$ equivalent merit                                                   |
|      |         | When $x = 2$ , $y = 2$ and so $(2, 2)$ lies on the line $y = x$ .                                                                                                                                                                                                                                                                                                 |                                                                                                                     |
|      |         | When $x = 2$ , $y = 2$ and so $(2, 2)$ has on the line $y = x$ .<br>When $x = 3$ , $y = 1$ and so $(3, 1)$ does not lie on the line $y = x$ .                                                                                                                                                                                                                     |                                                                                                                     |
|      |         | Therefore the coordinates of $P$ are $(2, 2)$ .                                                                                                                                                                                                                                                                                                                   |                                                                                                                     |

# Syllabus content, outcomes, targeted performance bands and marking guide

(b) Let  $u = 1 + 2 \tan x$ .

$$\frac{du}{dx} = 2\sec^2 x = \frac{2}{\cos^2 x} \Rightarrow dx = \frac{\cos^2 x}{2} du$$

When x = 0, u = 1 and when  $x = \frac{\pi}{4}$ , u = 3.

$$\int_{0}^{\frac{\pi}{4}} \frac{1}{(1+2\tan x)^{2}\cos^{2}x} dx = \int_{1}^{3} \frac{1}{2u^{2}} du$$
$$= -\left[\frac{1}{2u}\right]_{1}^{3}$$
$$= -\left(\frac{1}{6} - \frac{1}{2}\right)$$
$$= \frac{1}{3}$$

ME-C2 Further Calculus Skills ME12–1

Finds an expression for the integral

• Finds an expression for the integral in terms of *u* OR equivalent merit . . . . . 1

(c) Substituting  $\cos x = \frac{1-t^2}{1+t^2}$ ,  $\sin x = \frac{2t}{1+t^2}$  where  $t = \tan \frac{1}{2}x$ 

into  $\cos x - \sin x = 1$  and expressing

$$1 = \frac{1+t^2}{1+t^2}$$
 gives:

$$\frac{1-t^2}{1+t^2} - \frac{2t}{1+t^2} = \frac{1+t^2}{1+t^2}$$

$$\frac{1 - t^2 - 2t - 1 - t^2}{1 + t^2} = 0$$

$$\frac{-2(t^2 + t)}{1 + t^2} = 0$$

$$t^2 + t = 0$$

$$t(t+1) = 0$$

$$t = -1, 0$$

$$\tan\frac{1}{2}x = -1, 0$$

$$\tan\frac{1}{2}x = 0 \Rightarrow \frac{1}{2}x = 0, \ \pi$$

$$\tan\frac{1}{2}x = -1$$

tan is negative in the second quadrant and the related angle

is 
$$\frac{\pi}{4}$$
.

$$\tan\frac{1}{2}x = -1 \Rightarrow \frac{x}{2} = \frac{3\pi}{4}$$

So 
$$x = 0, \frac{3\pi}{2}, 2\pi$$
.

ME-T3 Trigonometric Equations
ME12–3
Bands E2–E3

- Gives the correct solution................................. 3
- Determines that  $\tan \frac{1}{2}x = -1, 0 \dots 2$

|     |       | Sample answer                                                                                                                                                                                                                                                  | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) | (i)   | Substituting $\tilde{F} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ and $\tilde{s} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ into $W = \tilde{F} \cdot \tilde{s}$ gives:                                                                                           | ME-V1 Introduction to Vectors ME12–2 Bands E3–E4  • Gives the correct solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |       | $W = E \cdot S$ $= \begin{pmatrix} 4 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \end{pmatrix}$                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | (ii)  | = 20 A unit vector in the direction of $\overrightarrow{PQ}$ is $\hat{s} = \frac{1}{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ .                                                                                                                                | ME-V1 Introduction to Vectors ME12–2 Bands E3–E4 • Gives the correct solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |       | Substituting $\tilde{E} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ , $\hat{s} = \frac{1}{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ and $ \tilde{s}  = 5$ into $W = (\tilde{E} \cdot \hat{s}) \tilde{s} $ gives:                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |       | $W = \left( \begin{pmatrix} 4 \\ -2 \end{pmatrix} \cdot \frac{1}{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix} \right) 5$ $= 20$                                                                                                                                    | MEN'I I de la companya de la company |
|     | (iii) | The component of $\underline{F}$ in the direction of $l$ is given by $\left(\frac{\underline{F} \cdot \underline{s}}{\underline{s} \cdot \underline{s}}\right)\underline{s}$ .                                                                                 | ME-V1 Introduction to Vectors  ME12–2 Bands E3–E4 Gives the correct solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |       | Substituting $F \cdot g = 20$ , $g \cdot g = 25$ and $g = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ into                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |       | $\left(\frac{\underline{F} \cdot \underline{s}}{\underline{s} \cdot \underline{s}}\right) \underline{s} \text{ gives:}$ $\left(\frac{\underline{F} \cdot \underline{s}}{\underline{s} \cdot \underline{s}}\right) \underline{s} = \frac{20}{25} \binom{3}{-4}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |       | $=\frac{4}{5}\binom{3}{-4}$ $(2.4)$                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |       | $= \binom{2.4}{-3.2}$ Alternatively, the component of $\vec{E}$ in the direction of $l$ is $(\vec{F} \cdot \hat{s})\hat{s}$ .                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|        |        | Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                            | Syllabus content, outcomes, targeted performance bands and marking guide                                                                                                                                                                                                                                                                                      |
|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Questi | ion 12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                               |
| (a)    | (i)    | Using $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ with $A = B = \frac{\pi x}{8}$ gives:<br>LHS = $\sin \frac{\pi x}{8} \sin \frac{\pi x}{8}$<br>= $\sin^2 \frac{\pi x}{8}$<br>RHS = $\frac{1}{2} \Big[ \cos \Big( \frac{\pi x}{8} - \frac{\pi x}{8} \Big) - \cos \Big( \frac{\pi x}{8} + \frac{\pi x}{8} \Big) \Big]$<br>= $\frac{1}{2} \Big( \cos 0 - \cos \frac{\pi x}{4} \Big)$<br>= $\frac{1}{2} \Big( 1 - \cos \frac{\pi x}{4} \Big)$ | ME-T2 Further Trigonometric Identities ME11–3 Bands E2–E3  • Demonstrates that LHS = $\sin^2 \frac{\pi x}{8}$ .  AND • Demonstrates that $RHS = \frac{1}{2} \left( 1 - \cos \frac{\pi x}{4} \right) \dots 2$ • Demonstrates that LHS = $\sin^2 \frac{\pi x}{8}$ .  OR • Demonstrates that $RHS = \frac{1}{2} \left( 1 - \cos \frac{\pi x}{4} \right) \dots 1$ |
|        | (ii)   | So $\sin^2\left(\frac{\pi x}{8}\right) = \frac{1}{2}\left(1 - \cos\frac{\pi x}{4}\right).$ $A = 6\int_0^8 \sin^2\left(\frac{\pi x}{8}\right) dx$ $= 3\int_0^8 1 - \cos\frac{\pi x}{4} dx$ $= 3\left[x - \frac{4}{\pi}\sin\frac{\pi x}{4}\right]_0^8$ $= 3\left(8 - \frac{4}{\pi}\sin 2\pi - (0 - \sin 0)\right)$                                                                                                                                         | ME-C2 Further Calculus Skills ME12–1, 12–4 Bands E2–E3  • Gives the correct solution                                                                                                                                                                                                                                                                          |
| (b)    | (i)    | $= 3(8-0)$ $= 24$ $E(\hat{P}) = p$ $= 0.36$ $sd(\hat{P}) = \sqrt{\frac{0.36 \times 0.64}{25}}$ $= 0.096$                                                                                                                                                                                                                                                                                                                                                 | ME-S1 The Binomial Distribution ME12–5 Bands E2–E3  • Correctly shows the mean AND standard deviation                                                                                                                                                                                                                                                         |
|        | (ii)   | Transforming to a standard normal variable, Z, gives:<br>$P(Z < \frac{0.12 - 0.36}{0.096}) = P(Z < -2.5)$ $= 1 - P(Z < 2.5)$ $= 1 - 0.9938$ $= 0.0062$                                                                                                                                                                                                                                                                                                   | ME-S1 The Binomial Distribution ME12–5 Bands E2–E3 Gives the correct solution                                                                                                                                                                                                                                                                                 |

### Syllabus content, outcomes, targeted Sample answer performance bands and marking guide The number of adults in the sample who have ME-S1 The Binomial Distribution a mortgage is $25 \times 0.36 = 9$ . ME12-5 Bands E2-E3 Let *X* represent the number of adults who have a mortgage and $X \sim \text{Bin}(25, 0.36)$ . Attempts to find P(X = 9) where $P(X=9) = {25 \choose 0} (0.36)^9 (1-0.36)^{16}$ $X \sim \text{Bin}(25, 0.36) \dots 1$ (i) Rearranging $y = \frac{1}{x^2 + 1}$ to express $x^2$ in terms ME-C3 Applications of Calculus (c) ME12-4 Bands E2-E4 of y gives $x^2 = \frac{1}{y} - 1$ . Provides correct integrand $V = \pi \int_{\frac{1}{2}}^{1} \left(\frac{1}{y} - 1\right) dy$ $= \pi \left[ \ln |y| - y \right]_{\frac{1}{2}}^{1}$ $=\pi\left(\ln 1 - 1 - \left(\ln \frac{1}{2} - \frac{1}{2}\right)\right)$ $=\pi\left(\ln 2-\frac{1}{2}\right)$ ME-C3 Applications of Calculus (ii) Rearranging $y = 1 - \frac{x}{2}$ to express x in terms of y gives ME12-4 Bands E2-E4 x = 2(1 - y). Provides correct integrand for volume $V = \pi \int_{\frac{1}{2}}^{1} (4(1-y)^{2}) dy$ of revolution OR equivalent merit. . . . . . 1 $= -\frac{4\pi}{3} \left[ \left( 1 - y \right)^3 \right]_{\frac{1}{2}}^1$ $=-\frac{4\pi}{3}\left(0-\frac{1}{8}\right)$ $=\frac{\pi}{6}$ Alternatively: The solid formed is a cone of radius 1 and height $\frac{1}{2}$ . Substituting these values into $V = \frac{1}{3}\pi r^2 h$ gives: $V = \frac{1}{3} \times \pi \times 1^2 \times \frac{1}{2}$ From the diagram, it can be reasoned that ME-C3 Applications of Calculus ME12-4 Bands E2-E4 $\pi\left(\ln 2 - \frac{1}{2}\right) > \frac{\pi}{6}$ . So $\ln 2 - \frac{1}{2} > \frac{1}{6} \Rightarrow \ln 2 > \frac{2}{3}$ .

|      |         | Sample answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Syllabus content, outcomes, targeted performance bands and marking guide                                                     |
|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Ques | tion 13 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              |
| (a)  | (i)     | Substituting $x = 12$ , $V = 21$ and $t = T$ into $x = Vt\cos\theta \text{ gives } 12 = 21T\cos\theta \Rightarrow T = \frac{12}{21\cos\theta}.$ Cancelling and using $\frac{1}{\cos\theta} = \sec\theta$ gives $T = \frac{4}{7}\sec\theta$ .                                                                                                                                                                                                                                  | ME-V1 Introduction to Vectors ME12–2 Bands E2–E3 • Gives the correct solution                                                |
|      | (ii)    | Substituting $y = 2$ , $V = 21$ and $t = T$ into $y = Vt\sin\theta - \frac{1}{2}gt^2 \text{ gives } 2 = 21T\sin\theta - 4.9T^2.$                                                                                                                                                                                                                                                                                                                                              | ME-V1 Introduction to Vectors ME12–2 Bands E2–E3 • Gives the correct solution                                                |
|      |         | Substituting $T = \frac{4}{7}\sec\theta$ into<br>$2 = 21T\sin\theta - 4.9T^{2} \text{ gives:}$ $2 = 21\left(\frac{4}{7}\sec\theta\right)\sin\theta - 4.9\left(\frac{4}{7}\sec\theta\right)^{2}$ $= 12\tan\theta - \frac{8}{5}\sec^{2}\theta$ $= 12\tan\theta - \frac{8}{5}(1 + \tan^{2}\theta)$ $10 = 60\tan\theta - 8(1 + \tan^{2}\theta)$ $0 = 8\tan^{2}\theta - 60\tan\theta + 18$                                                                                         | • Substitutes $T = \frac{4}{7}\sec\theta$ into $2 = 21T\sin\theta - 4.9T^2$ and attempts to form a quadratic in $\tan\theta$ |
|      | (iii)   | So $4\tan^2\theta - 30\tan\theta + 9 = 0$ .<br>Using the quadratic formula to solve $4\tan^2\theta - 30\tan\theta + 9 = 0$ for $\tan\theta$ gives $\tan\theta = \frac{15 \pm 3\sqrt{21}}{4} (= 0.3130, 7.1869)$ .<br>The shortest flight time occurs for $\theta = \tan^{-1}\left(\frac{15 - 3\sqrt{21}}{4}\right) (= 0.3130)$ .<br>Substituting $\theta = \tan^{-1}\left(\frac{15 - 3\sqrt{21}}{4}\right) (= 0.3130)$ into $T = \frac{4}{7}\sec\theta$ gives $T = 0.60$ (s). | <ul> <li>ME-V1 Introduction to Vectors</li> <li>ME12-2, 12-6 Bands E2-E3</li> <li>Gives the correct solution</li></ul>       |

# Syllabus content, outcomes, targeted performance bands and marking guide

(b) Consider n = 1.

LHS = 
$$\frac{2}{1 \times 3} = \frac{2}{3}$$
 and  
RHS =  $\frac{3}{2} - \frac{2(1) + 3}{(1+1)(1+2)} = \frac{4}{6} = \frac{2}{3} = \text{LHS}.$ 

The statement is true when n = 1.

Suppose true for n = k.

So 
$$\frac{2}{1\times 3} + \frac{2}{2\times 4} + \frac{2}{3\times 5} + \dots + \frac{2}{k(k+2)} = \frac{3}{2} - \frac{2k+3}{(k+1)(k+2)}$$
.

Show it is true for n = k + 1: that is,

If true for n = k, then true for n = k + 1.

Hence, by mathematical induction, true for  $n \ge 1$ .

$$\frac{2}{1\times3} + \frac{2}{2\times4} + \frac{2}{3\times5} + \dots + \frac{2}{k(k+2)} + \frac{2}{(k+1)(k+3)} = \frac{3}{2} - \frac{2(k+1)+3}{((k+1)+1)((k+1)+2)}$$

LHS = 
$$\frac{2}{1 \times 3} + \frac{2}{2 \times 4} + \frac{2}{3 \times 5} + \dots + \frac{2}{k(k+2)} + \frac{2}{(k+1)(k+3)}$$
  
=  $\frac{3}{2} - \frac{2k+3}{(k+1)(k+2)} + \frac{2}{(k+1)(k+3)}$   
=  $\frac{3}{2} - \frac{(2k+3)(k+3) - 2(k+2)}{(k+1)(k+2)(k+3)}$   
=  $\frac{3}{2} - \frac{2k^2 + 7k + 5}{(k+1)(k+2)(k+3)}$   
=  $\frac{3}{2} - \frac{(2k+5)(k+1)}{(k+1)(k+2)(k+3)}$   
=  $\frac{3}{2} - \frac{2k+5}{(k+2)(k+3)}$   
=  $\frac{3}{2} - \frac{2(k+1) + 3}{((k+1)+1)((k+1)+2)}$   
= RHS

ME-P1 Proof by Mathematical Induction
ME12-1 Bands E2-E4

### Syllabus content, outcomes, targeted performance bands and marking guide

(c) (i) Use of  $tan(A + B) = \frac{tanA + tanB}{1 - tanA tanB}$  with  $A = B = \theta$ .

$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$

Use of  $tan(A + B) = \frac{tanA + tanB}{1 - tanA tanB}$  with  $A = 2\theta$  and

$$B = \theta$$
.

$$\tan 3\theta = \frac{\tan 2\theta + \tan \theta}{1 - \tan 2\theta \tan \theta}$$

$$= \frac{\frac{2\tan \theta}{1 - \tan^2 \theta} + \tan \theta}{1 - \frac{2\tan \theta}{1 - \tan^2 \theta} \tan \theta}$$

$$= \frac{2\tan \theta + \tan \theta (1 - \tan^2 \theta)}{\frac{1 - \tan^2 \theta}{1 - \tan^2 \theta}}$$

$$= \frac{1 - \tan^2 \theta}{1 - \tan^2 \theta}$$

$$= \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

ME-T3 Trigonometric Equations ME12–3

(ii) Consider  $x^3 - 3x^2 - 3x + 1 = 0$  with  $x = \tan \theta$ .

$$\tan^3 \theta - 3\tan^2 \theta - 3\tan \theta + 1 = 0$$

$$\frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} = 1$$

So  $\tan 3\theta = 1$  and finding the roots of  $\tan 3\theta = 1$  corresponds to finding the roots of the cubic equation where  $x = \tan \theta$ .

 $3\theta = \tan^{-1} 1 + k\pi$  where k is an integer

$$\theta = \frac{\pi}{12} + \frac{k\pi}{3}$$

$$= \frac{\pi}{12}, \frac{5\pi}{12}, \frac{9\pi}{12}$$

 $\tan \frac{3\pi}{4} = -1$  and so one factor of the cube is x + 1.

So 
$$x^3 - 3x^2 - 3x + 1 = (x+1)(x^2 - 4x + 1)$$
.

So  $\tan \frac{\pi}{12}$  and  $\tan \frac{5\pi}{12}$  are the roots of  $x^2 - 4x + 1 = 0$ .

Solving the quadratic equation  $x^2 - 4x + 1 = 0$  for x gives  $x = 2 \pm \sqrt{3}$ .

Since  $\tan \frac{\pi}{12} < \tan \frac{5\pi}{12}$ ,  $\tan \frac{\pi}{12}$  is the smaller root and  $x = 2 - \sqrt{3}$ .

ME-T3 Trigonometric Equations
ME12–3 Bands E2–E4

- Gives correct exact value of  $\tan \frac{\pi}{12} \dots 4$
- Deduces that  $\theta = \frac{\pi}{12} + \frac{k\pi}{3}$  where k is an integer OR equivalent merit . . . . . 2
- Deduces that  $\tan 3\theta = 1 \dots 1$

### Syllabus content, outcomes, targeted Sample answer performance bands and marking guide **Question 14** ME-F1 Further Work with Functions (a) (i) ME11-2, 11-7 Bands E2-E4 Sketches correct graph with asymptotes at x = -1 and $y = 1 \dots 2$ Shows minimum turning point at origin OR equivalent merit .........1 ME-F1 Further Work with Functions (ii) ME11-2, 11-7 Bands E2-E4 Sketches correct graph with asymptotes Shows minimum turning point at origin OR equivalent merit .........1 ME-F1 Further Work with Functions $(f(x))^2 = f(x) \Rightarrow f(x)(f(x) - 1) = 0$ ME11-2, 11-7 Bands E2-E4 So f(x) = 1 or f(x) = 0. $-\frac{x}{x+1} = 1 \Rightarrow x = -\frac{1}{2}$ Hence $x = -\frac{1}{2}$ or x = 0. OR The graphs of y = f(x) and $y = (f(x))^2$ intersect at O, The graphs of y = f(x) and $y = (f(x))^2$ intersect on the line y = 1, where $x = -\frac{1}{2}$ . Start with the RHS and show that it equals the LHS. (b) ME-C3 Applications of Calculus ME12-4 Bands E2-E4 RHS = $\frac{1}{50} \left( \frac{(50-A)+A}{A(50-A)} \right)$ $=\frac{1}{A(50-A)}$ =LHS

# Syllabus content, outcomes, targeted performance bands and marking guide

(ii) This is a differential equation of the form  $\frac{dA}{dt} = g(A)$ .

Attempt to separate variables and integrate both sides.

$$\int 1 dt = \int \frac{25}{A(50 - A)} dA$$

$$t = \frac{1}{2} \int \left( \frac{1}{A} + \frac{1}{50 - A} \right) dA \text{ (using the part (i) result)}$$

$$= \frac{1}{2} (\ln|A| - \ln|50 - A|) + c$$

$$= \frac{1}{2} \ln\left| \frac{A}{50 - A} \right| + c$$

Rearranging gives  $A_0 e^{2t} = \frac{A}{50 - A}$  where  $A_0 = e^{-2c}$  and hence  $A_0 > 0$ .

When 
$$t = 0$$
,  $A = \frac{1}{2}$  and so  $A_0 = \frac{1}{99}$ .

Note: There are various possible ways to find the value of the constant.

$$e^{2t} = \frac{99A}{50 - A}$$
$$99Ae^{-2t} = 50 - A$$
$$A(1 + 99e^{-2t}) = 50$$
So 
$$A = \frac{50}{1 + 99e^{-2t}}.$$

(iii) As  $t \to \infty$ ,  $1 + 99e^{-2t} \to 1$  and so  $A \to \frac{50}{1} = 50$ .

The limiting area of the bacteria colony is 50 cm<sup>2</sup>.

- Correctly applies initial condition . . . . . 2

(iv) The graph of  $\frac{dA}{dt}$  versus A (inverted parabola) has a

maximum at A = 25.

It requires us to find the value of t such that

$$25 = \frac{50}{1 + 99e^{-2t}}.$$

$$25(1 + 99e^{-2t}) = 50$$

$$1 + 99e^{-2t} = 2$$

$$e^{-2t} = \frac{1}{99}$$

$$e^{2t} = 99$$

$$t = \frac{1}{2}\ln 99 \text{ (days)}$$

The rate of change of the area is at its maximum at  $t = \frac{1}{2} \ln 99$  (days).

Note: There are other valid but more time-consuming methods of determining this solution.

Method 1:

Finding  $\frac{d^2A}{dt^2} = \frac{1}{25^2}A(50-A)(50-2A)$ , determining

that  $\frac{dA}{dt}$  is a maximum when A = 25 and then solving

for t as above.

Method 2:

Determining the value of t when the (non-stationary)

point of inflection occurs by finding  $\frac{d^2A}{dt^2}$  in terms of t

and then finding the value of t such that  $\frac{d^2A}{dt^2} = 0$ .

# Syllabus content, outcomes, targeted performance bands and marking guide

ME-C3 Applications of Calculus ME12–4 Bands E2–E4

(c) From the table,  $f(x) = g^{-1}(x)$  and so  $f(-1) = g^{-1}(-1) = 0$ .

$$f'(-1) = \frac{1}{g'(f(-1))}$$
$$= \frac{1}{g'(0)}$$
$$= \frac{1}{\frac{1}{2}}$$
$$= 2$$

ME-C2 Further Calculus Skills

ME12–1 Bands